Item Parameterization and Ability Estimation: Considerations for Bayesian Multidimensional Adaptive Testing

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:ProQuest Dissertations and Theses (2025)
מחבר ראשי: Mintz, Catherine Elizabeth
יצא לאור:
ProQuest Dissertations & Theses
נושאים:
גישה מקוונת:Citation/Abstract
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3225064912
003 UK-CbPIL
020 |a 9798286433766 
035 |a 3225064912 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Mintz, Catherine Elizabeth 
245 1 |a Item Parameterization and Ability Estimation: Considerations for Bayesian Multidimensional Adaptive Testing 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a This dissertation is comprised of two studies that examine the specifications set in Bayesian multidimensional adaptive testing (MAT). The first study examines the benefits of incorporating item response choice as nominal−response data by comparing the performance of the Multidimensional Nominal Response Model (MNRM) against the Multidimensional Three−Parameter Logistic Model (M3PL) in developing item banks and item selection criteria. Specifically, the item selection criteria D−optimality and mutual information are extended for use with nominal−response data and nominal−response item parameters. Results indicate that incorporating item response choice via the MNRM yields slight advantages over the traditional dichotomous scoring approach (operationalized via the M3PL). However, the perceived benefit appears to be moderated by the choice of item selection criterion, with D−optimality performing better with nominal−response data and mutual information performing better with dichotomous−response data.The second study addresses to what extent the informativity of a prior distribution, which can be used in MAT updating algorithms, affects examinee ability estimates. In this study, a prior distribution is placed on examinee ability; the degree of informativity is manipulated by setting the prior distribution’s variance to either 1,10,1000, or 1,000,000. The effect is tested across MATs that vary in item bank parameterization (MNRM versus M3PL) and item selection criterion (D−optimality versus mutual information). Overall results show a difference when the variance is set to 1 versus 10, 1000, and 1,000,000; negligible differences exist among the larger variance values. Similar to the first study, however, outcomes appear dependent on both item bank and item selection criterion choices. 
653 |a Educational tests & measurements 
653 |a Statistics 
653 |a Educational evaluation 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3225064912/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3225064912/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch