Efficient Algorithm for the Nonadditive Traffic Assignment Problem With Link Capacity Constraints

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Journal of Advanced Transportation vol. 2025 (2025)
المؤلف الرئيسي: Hu, Wangxin
مؤلفون آخرون: Huang, Zhongxiang, Cao, Shihao
منشور في:
John Wiley & Sons, Inc.
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3225275775
003 UK-CbPIL
022 |a 0197-6729 
022 |a 2042-3195 
022 |a 0018-1501 
024 7 |a 10.1155/atr/9941645  |2 doi 
035 |a 3225275775 
045 2 |b d20250101  |b d20251231 
084 |a 164028  |2 nlm 
100 1 |a Hu, Wangxin  |u School of Transportation Changsha University of Science and Technology Changsha China 
245 1 |a Efficient Algorithm for the Nonadditive Traffic Assignment Problem With Link Capacity Constraints 
260 |b John Wiley & Sons, Inc.  |c 2025 
513 |a Journal Article 
520 3 |a This paper presents an insightful examination of the modeling and efficient solution algorithm for the link capacitated nonadditive traffic assignment problem (CNaTAP) to provide highly accurate flow solutions for large-scale networks. Despite the increasing significance of the CNaTAP, the ability to efficiently solve it for satisfactory accuracy in practical applications remains inadequate. Given that existing CNaTAP models and algorithms are typically limited to small experimental networks, the CNaTAP model is formulated as a variational inequality (VI) problem in this paper. This formulation is decomposed into two VI subproblems that involve equilibrium and capacity constraints, utilizing the Karush–Kuhn–Tucker (KKT) conditions. The Lagrangian multipliers for the capacity constraints are treated as fixed costs for the links in the equilibrium subproblem, ensuring the stability of the Cartesian product structure within the feasible set. This approach facilitates the decomposition of OD pairs, enabling the efficient solution of CNaTAP in large-scale networks. In addition, an algorithmic framework is developed that incorporates high-frequency updates of these Lagrangian multipliers, along with an adaptive Barzilai–Borwein (ABB) step-size calculation method applied to expedite convergence in the equilibrium subproblem. Extensive numerical experiments confirm the efficacy of the proposed algorithm in efficiently solving large-scale networks with high convergence accuracy. 
653 |a Mathematical programming 
653 |a Accuracy 
653 |a Traffic assignment 
653 |a Convergence 
653 |a Algorithms 
653 |a Costs 
653 |a Assignment problem 
653 |a Equilibrium 
653 |a Kuhn-Tucker method 
653 |a Decomposition 
653 |a Travel 
653 |a Methods 
653 |a Networks 
653 |a Realism 
653 |a Constraints 
653 |a Lagrange multiplier 
653 |a Efficiency 
653 |a Economic 
700 1 |a Huang, Zhongxiang  |u School of Transportation Changsha University of Science and Technology Changsha China 
700 1 |a Cao, Shihao  |u School of Transportation Changsha University of Science and Technology Changsha China 
773 0 |t Journal of Advanced Transportation  |g vol. 2025 (2025) 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3225275775/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3225275775/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3225275775/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch