Optimization Methods for Customized Bus Routes in Random Environments

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Advanced Transportation vol. 2025 (2025)
Autor principal: Gong, Fangyuan
Otros Autores: Jia, Chuanjun, Wu, Xu
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3225275864
003 UK-CbPIL
022 |a 0197-6729 
022 |a 2042-3195 
022 |a 0018-1501 
024 7 |a 10.1155/atr/1680317  |2 doi 
035 |a 3225275864 
045 2 |b d20250101  |b d20251231 
084 |a 164028  |2 nlm 
100 1 |a Gong, Fangyuan  |u School of Traffic and Transportation Beijing Jiaotong University Beijing 100044 China 
245 1 |a Optimization Methods for Customized Bus Routes in Random Environments 
260 |b John Wiley & Sons, Inc.  |c 2025 
513 |a Journal Article 
520 3 |a The customized bus in operation faces numerous random factors that affect the service level and attractiveness to passengers. Therefore, this paper investigates the optimization problem of customized bus routes considering random vehicle travel times and the capability to respond to dynamic requests in real time. We developed a stochastic programming model that minimizes total cost and passenger travel time. The innovation lies in the model’s ability to respond to requests made by passengers during service and to model the randomness of vehicle travel times using a known distribution. Furthermore, we propose a heuristic algorithm combining the nondominated sorting genetic algorithm II (NSGA-II) and a variable neighborhood search operator. This algorithm starts by generating an optimized initial path based on initial reservation demands and then employs a dynamic adjustment mechanism to respond to real-time requests. The effectiveness and superiority of our algorithm are validated through an illustrative example. Finally, numerical experiments using taxi trajectory data demonstrate that considering both randomness and real-time aspects can significantly reduce the total cost and penalties for early and late arrivals and improve the bus service level. 
653 |a Randomness 
653 |a Integer programming 
653 |a Public transportation 
653 |a Random variables 
653 |a Algorithms 
653 |a Buses 
653 |a Passengers 
653 |a Travel time 
653 |a Stochastic models 
653 |a Automobile customizing 
653 |a Heuristic 
653 |a Sorting algorithms 
653 |a Traffic congestion 
653 |a Customization 
653 |a Heuristic methods 
653 |a Efficiency 
653 |a Vehicles 
653 |a Commuting 
653 |a Genetic algorithms 
653 |a Route optimization 
653 |a Planning 
653 |a Optimization 
653 |a Quality of service 
653 |a Literature reviews 
653 |a Real time 
653 |a Stochastic programming 
653 |a Operating costs 
653 |a Economic 
700 1 |a Jia, Chuanjun  |u School of Traffic and Transportation Beijing Jiaotong University Beijing 100044 China 
700 1 |a Wu, Xu  |u School of Traffic and Transportation Beijing Jiaotong University Beijing 100044 China 
773 0 |t Journal of Advanced Transportation  |g vol. 2025 (2025) 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3225275864/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3225275864/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3225275864/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch