Spectral Optimized Multiderivative Hybrid Block Method for Fitzhugh–Nagumo Equations

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:International Journal of Differential Equations vol. 2025 (2025)
Päätekijä: Rufai, Uthman O
Muut tekijät: Sibanda, Precious, Goqo, Sicelo P, Ahmedai, Salma A A, Adeyemo, Adeyinka S
Julkaistu:
John Wiley & Sons, Inc.
Aiheet:
Linkit:Citation/Abstract
Full Text
Full Text - PDF
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3225275930
003 UK-CbPIL
022 |a 1687-9643 
022 |a 1687-9651 
024 7 |a 10.1155/ijde/1943008  |2 doi 
035 |a 3225275930 
045 2 |b d20250101  |b d20251231 
084 |a 130641  |2 nlm 
100 1 |a Rufai, Uthman O  |u School of Mathematics Statistics and Computer Science University of KwaZulu-Natal Scottsville, Pietermaritzburg 3209 South Africa 
245 1 |a Spectral Optimized Multiderivative Hybrid Block Method for Fitzhugh–Nagumo Equations 
260 |b John Wiley & Sons, Inc.  |c 2025 
513 |a Journal Article 
520 3 |a The Fitzhugh–Nagumo equation, a key model for excitable systems in biology and neuroscience, requires efficient numerical methods due to its nonlinear nature. A spectral optimized multiderivative hybrid block method is proposed, constructed using a multistep collocation and interpolation technique with an approximated power series as the basis function. Incorporating two optimal intra-step points, the method demonstrates improved accuracy, with its consistency, convergence, and absolute stability rigorously analyzed. By combining the optimized multiderivative hybrid block method in time with a spectral collocation method in space, the approach demonstrates potency and flexibility in solving partial differential equations. Prior to using the spectral method, the partial differential equation is linearized using a linear partition technique. Numerical experiments confirm the accuracy and efficiency of the method compared to existing methods, demonstrating the potential of the method as a robust framework for solving partial differential equations requiring both high accuracy and stability. 
653 |a Basis functions 
653 |a Accuracy 
653 |a Methods 
653 |a Stability 
653 |a Numerical methods 
653 |a Efficiency 
653 |a Spectral methods 
653 |a Collocation methods 
653 |a Power series 
653 |a Partial differential equations 
653 |a Differential equations 
700 1 |a Sibanda, Precious  |u School of Mathematics Statistics and Computer Science University of KwaZulu-Natal Scottsville, Pietermaritzburg 3209 South Africa 
700 1 |a Goqo, Sicelo P  |u School of Mathematics Statistics and Computer Science University of KwaZulu-Natal Scottsville, Pietermaritzburg 3209 South Africa 
700 1 |a Ahmedai, Salma A A  |u School of Mathematics Statistics and Computer Science University of KwaZulu-Natal Scottsville, Pietermaritzburg 3209 South Africa 
700 1 |a Adeyemo, Adeyinka S  |u School of Mathematics Statistics and Computer Science University of KwaZulu-Natal Scottsville, Pietermaritzburg 3209 South Africa 
773 0 |t International Journal of Differential Equations  |g vol. 2025 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3225275930/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3225275930/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3225275930/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch