A Modified Regularization Method for Inverse Problems of Nonhomogeneous Differential Operator Equation

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Mathematics vol. 2025 (2025)
Hlavní autor: Teniou, Nihed
Vydáno:
John Wiley & Sons, Inc.
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3225275950
003 UK-CbPIL
022 |a 2314-4629 
022 |a 2314-4785 
024 7 |a 10.1155/jom/2641676  |2 doi 
035 |a 3225275950 
045 2 |b d20250101  |b d20251231 
084 |a 259334  |2 nlm 
100 1 |a Teniou, Nihed  |u Laboratory of Applied Mathematics and Modeling Department of Mathematics University Frères Mentouri Constantine 1 Constantine 25000 Algeria 
245 1 |a A Modified Regularization Method for Inverse Problems of Nonhomogeneous Differential Operator Equation 
260 |b John Wiley & Sons, Inc.  |c 2025 
513 |a Journal Article 
520 3 |a This paper investigates an abstract nonhomogeneous backward Cauchy problem governed by an unbounded linear operator in a Hilbert space <inline-formula>H</inline-formula>. The coefficient operator in the equation is assumed to be unbounded, self-adjoint, positive, and to possess a discrete spectrum, with data prescribed at the final time <inline-formula>t=T</inline-formula>. It is well known that such problems are severely ill-posed. To regularize the problem, we employ a modified approach in which we perturb both the equation and the final condition, rather than treating only one of them. Specifically, the key idea of our work is to simultaneously apply two regularization methods: the quasireversibility method and the quasiboundary value method, to obtain an approximate nonlocal problem depending on two small parameters. We establish stability estimates for the solution of the regularized problem and show that the modified problem is stable, with its solution approximating the exact solution of the original problem. Furthermore, a numerical experiment involving the one-dimensional heat equation is conducted to confirm the practical effectiveness of the proposed method and to illustrate its potential for addressing this type of inverse problem. 
653 |a Thermodynamics 
653 |a Regularization 
653 |a Inverse problems 
653 |a Hilbert space 
653 |a Operators (mathematics) 
653 |a Estimates 
653 |a Cauchy problems 
653 |a Exact solutions 
653 |a Approximation 
653 |a Regularization methods 
653 |a Differential equations 
653 |a Linear operators 
653 |a Mathematics 
773 0 |t Journal of Mathematics  |g vol. 2025 (2025) 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3225275950/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3225275950/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3225275950/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch