UTILIZING MACHINE VISION AND ARTIFICIAL NEURAL NETWORKS FOR DRIED GRAPE SORTING DURING PRODUCTION

Guardado en:
Detalles Bibliográficos
Publicado en:Chemical Industry & Chemical Engineering Quarterly vol. 31, no. 3 (Jul-Sep 2025), p. 219-228
Autor principal: Ruangurai, Piyanun
Otros Autores: Tanasansurapong, Nattabut, Prasitsanha, Sirakupt, Bunchan, Rewat, Tuvayanond, Wiput, Haval, Thana Chotchuangchutc, Silawatchananai, Chaiyaporn
Publicado:
Association of the Chemical Engineers of Serbia
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3225548037
003 UK-CbPIL
022 |a 1451-9372 
022 |a 2217-7434 
022 |a 0354-7531 
024 7 |a 10.2298/CICEQ231003030R  |2 doi 
035 |a 3225548037 
045 2 |b d20250701  |b d20250930 
100 1 |a Ruangurai, Piyanun  |u College of Industrial Technology, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand 
245 1 |a UTILIZING MACHINE VISION AND ARTIFICIAL NEURAL NETWORKS FOR DRIED GRAPE SORTING DURING PRODUCTION 
260 |b Association of the Chemical Engineers of Serbia  |c Jul-Sep 2025 
513 |a Journal Article 
520 3 |a This study introduces a machine vision technique that utilizes an artificial neural network (ANN) to develop a predictive model for classifying dried grapes during the drying process. The primary objective of this model is to mitigate the burden placed on the operator and minimize the occurrence of over-dried items. The present study involves the development of a model that is constructed using the characteristics of grape color and shape. There exist two distinct categories of labels for grapes: fully desiccated grapes, commonly referred to as raisins, and grapes that have undergone partial drying. Image processing is utilized to collect and observe five significant characteristics of grapes during the drying process. The findings indicate a significant decrease in the levels of red, green, and blue colors (RGB) during the initial 15-hour drying period. The predictive model extracts properties such as RGB color, roundness, and shrinkage from the image while it undergoes the drying process. The artificial neural network (ANN) model achieved a level of accuracy performance of 78%. In this work, the dehydration apparatus will cease operation in an automated manner whenever the entirety of the grapes situated on the tray has been projected to transform raisins. Ovaj rad uvodi tehniku obrade slike koja koristi veštačku neuronsku mrežu (ANN) za razvoj prediktivnog modela za klasifikaciju suvog grožða tokom procesa sušenja. Primarni cilj ovog modela je da se ublaži teret koji se stavlja na operatera i minimizira pojavu previše osušenih grozdova. Ova studija podrazumeva razvoj modela koji se konstruiše korišćenjem karakteristika boje i oblika grožða. Postoje dve različite kategorije za grožðe: potpuno isušeno grožðe, koje se obično naziva suvo grožðe, i grožðe koje je podvrgnuto delimičnom sušenju. Obrada slike se koristi za prikupljanje i posmatranje pet značajnih karakteristika grožða tokom procesa sušenja. Nalazi ukazuju na značajno smanjenje nivoa crvene, zelene i plave boje (RGB) tokom početnog perioda sušenja od 15 sati. Prediktivni model izdvaja svojstva, kao što su RGB boja, zaobljenost i skupljanje iz slike, dok se grožðe podvrgava procesu sušenja. Model veštačke neuronske mreže (ANN) postigao je nivo tačnosti od 78%. U ovom radu, aparat za dehidraciju cé automatski prestati sa radom kad god se planira da celokupno grožðe na tacni preobrazi u suvo grožðe. 
610 4 |a Raspberry Pi Ltd 
653 |a Roundness 
653 |a Embedded systems 
653 |a Dehydration 
653 |a Control algorithms 
653 |a Machine vision 
653 |a Investigations 
653 |a Food 
653 |a Grapes 
653 |a Computer vision 
653 |a Vision systems 
653 |a Prediction models 
653 |a Artificial neural networks 
653 |a Drying 
653 |a Neural networks 
653 |a Classification 
653 |a Shape 
653 |a Fruits 
653 |a Color 
653 |a Microwaves 
653 |a Image processing 
653 |a Raisins 
653 |a Moisture content 
653 |a Image processing systems 
700 1 |a Tanasansurapong, Nattabut  |u College of Industrial Technology, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand 
700 1 |a Prasitsanha, Sirakupt  |u College of Industrial Technology, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand 
700 1 |a Bunchan, Rewat  |u College of Industrial Technology, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand 
700 1 |a Tuvayanond, Wiput  |u Industry Agricultural Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani, Thailand 
700 1 |a Haval, Thana Chotchuangchutc 
700 1 |a Silawatchananai, Chaiyaporn 
773 0 |t Chemical Industry & Chemical Engineering Quarterly  |g vol. 31, no. 3 (Jul-Sep 2025), p. 219-228 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3225548037/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3225548037/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3225548037/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch