Tracer-based Rapid Anthropogenic Carbon Estimation (TRACE)

Сохранить в:
Библиографические подробности
Опубликовано в::Earth System Science Data vol. 17, no. 6 (2025), p. 3073
Главный автор: Carter, Brendan R
Другие авторы: Schwinger, Jörg, Sonnerup, Rolf, Fassbender, Andrea J, Sharp, Jonathan D, Dias, Larissa M, Sandborn, Daniel E
Опубликовано:
Copernicus GmbH
Предметы:
Online-ссылка:Citation/Abstract
Full Text
Full Text - PDF
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 3225641902
003 UK-CbPIL
022 |a 1866-3508 
022 |a 1866-3516 
024 7 |a 10.5194/essd-17-3073-2025  |2 doi 
035 |a 3225641902 
045 2 |b d20250101  |b d20251231 
084 |a 123624  |2 nlm 
100 1 |a Carter, Brendan R  |u Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, WA 98115, USA; NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, WA 98115, USA 
245 1 |a Tracer-based Rapid Anthropogenic Carbon Estimation (TRACE) 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a The ocean is one of the largest sinks for anthropogenic carbon dioxide&#xa0;(Canth) and its removal of carbon dioxide (CO<inline-formula>2)</inline-formula> from the atmosphere has been valued at hundreds of billions to trillions of US&#xa0;dollars in climate mitigation annually. The ecosystem impacts caused by planet-wide shifts in ocean chemistry resulting from marine&#xa0;Canth accumulation are an active area of research. For these reasons, we need accessible tools to quantify ocean&#xa0;Canth inventories and distributions and to predict how they might evolve in response to future emissions and mitigation activities. Unfortunately, Canth&#xa0;estimation methods are typically only accessible to trained scientists and modelers with access to significant computational resources. Here, we make modifications to the transit time distribution approach for Canth&#xa0;estimation that render the method more accessible. We also release software (BRCScienceProducts, 2025) called “Tracer-based Rapid Anthropogenic Carbon Estimation version&#xa0;1”&#xa0;(TRACEv1) that allows users – with one line of code – to obtain&#xa0;Canth and water mass age estimates throughout the global open ocean from user-supplied values of geographic location, pressure, salinity, temperature, and the estimate year. We use this code to generate a data product of global gridded open-ocean Canth distributions&#xa0;(TRACEv1_GGCanth; Carter, 2025) that ranges from the preindustrial era through 2500 under a range of Shared Socioeconomic Pathways&#xa0;(SSPs, or atmospheric CO2 concentration pathways). We estimated the skill of these estimates by reconstructing&#xa0;Canth in models with known distributions of&#xa0;Canth and transient tracers and by conducting perturbation tests. In the model-based reconstruction test, TRACEv1 reproduces the global ocean&#xa0;Canth inventory to within <inline-formula>±10</inline-formula> % in&#xa0;1980 and&#xa0;2014. We discuss implications and limitations of the projected Canth&#xa0;distributions and highlight ways that the estimation strategy might be improved. One finding is that the ocean will continue to increase its net Canth&#xa0;inventory at least through&#xa0;2500 due to deep-ocean ventilation, even with the SSP in which intense mitigation successfully decreases atmospheric&#xa0;Canth by <inline-formula>∼60</inline-formula> % in&#xa0;2500 relative to the 2024&#xa0;concentration. A notable limitation of this and similar projections made with TRACEv1 is that ongoing and potential future warming and changing oceanic circulation patterns with climate change are not captured by the method. The data products generated by this research are available as MATLAB code (10.5281/zenodo.15692788, BRCScienceProducts, 2025) and a spatially and temporally gridded data product (10.5281/zenodo.15692788, BRCScienceProducts, 2025). 
653 |a Climate change 
653 |a Carbon dioxide removal 
653 |a Accessibility 
653 |a Carbon dioxide 
653 |a Regression analysis 
653 |a Biogeochemistry 
653 |a Ventilation 
653 |a Anthropogenic factors 
653 |a Estimates 
653 |a Carbon dioxide concentration 
653 |a Ocean circulation patterns 
653 |a Human influences 
653 |a Oceans 
653 |a Climate change mitigation 
653 |a Marine chemistry 
653 |a Salinity 
653 |a Circulation patterns 
653 |a Tracers 
653 |a Water masses 
653 |a Marine ecosystems 
653 |a Environmental impact 
653 |a Neural networks 
653 |a Seawater 
653 |a Ocean circulation 
653 |a Transit time 
653 |a Environmental 
700 1 |a Schwinger, Jörg  |u Norwegian Research Center, University of Bergen, Nygårdsgaten 112, 5008 Bergen, Norway 
700 1 |a Sonnerup, Rolf  |u Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, WA 98115, USA 
700 1 |a Fassbender, Andrea J  |u NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, WA 98115, USA 
700 1 |a Sharp, Jonathan D  |u Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, WA 98115, USA; NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, WA 98115, USA 
700 1 |a Dias, Larissa M  |u Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, WA 98115, USA; NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, WA 98115, USA 
700 1 |a Sandborn, Daniel E  |u School of Oceanography, University of Washington, Seattle, WA 98195, USA 
773 0 |t Earth System Science Data  |g vol. 17, no. 6 (2025), p. 3073 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3225641902/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3225641902/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3225641902/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch