Measuring extremes-driven direct biophysical impacts in agricultural drought damages

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:Natural Hazards and Earth System Sciences vol. 25, no. 6 (2025), p. 2115
Үндсэн зохиолч: Nagpal, Mansi
Бусад зохиолчид: Heilemann, Jasmin, Samaniego, Luis, Klauer, Bernd, Gawel, Erik, Klassert, Christian
Хэвлэсэн:
Copernicus GmbH
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3225785254
003 UK-CbPIL
022 |a 1561-8633 
022 |a 1684-9981 
024 7 |a 10.5194/nhess-25-2115-2025  |2 doi 
035 |a 3225785254 
045 2 |b d20250101  |b d20251231 
084 |a 123633  |2 nlm 
100 1 |a Nagpal, Mansi  |u Department of Economics, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany 
245 1 |a Measuring extremes-driven direct biophysical impacts in agricultural drought damages 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a Assessing the economic implications of droughts has become increasingly important due to their substantial impacts on agriculture. Existing empirical analyses for drought damages are often conducted on a national scale without spatially distributed data, which might bias estimates. Furthermore, the cumulative effects of multiple weather extremes, such as heat or preceded frost co-occurring with drought, are often overlooked. Measuring the direct biophysical impacts of such extremes on agriculture is essential for more precise risk assessment. This study presents a comprehensive approach to measure the cumulative economic damages of droughts and other hydrometeorological extremes on agriculture, focusing on eight major field crops in Germany. By utilizing a statistical yield model, we isolate the effects of multiple extremes on crop yields from other influencing factors (such as pests and diseases or farm management) and analyse their contribution to revenue losses during droughts at the district level from 2016–2022. Our findings indicate that the average annual direct biophysical damage caused by extremes under drought conditions during this period amounts to EUR 781 million (sensitivity range: EUR 766 million–EUR 812 million) across Germany. The study also reveals that biophysical impacts of extremes alone account for 60 % of reported revenue damages during widespread drought years. For maize, direct biophysical damage explains up to 97 % (2018) of revenue losses. Additionally, comparison of national level damage estimates using aggregated and spatially disaggregated data shows that the aggregated data matches overall results, but diverges for maize and wheat, highlighting the importance of spatially distributed damage assessment. In this paper, we provide detailed estimates of extremes-driven direct biophysical damages at the district level, offering a high-resolution understanding of the spatial and temporal variability of these impacts. Assessing the extent of revenue losses resulting from these extremes alone can provide valuable insights for the development of effective drought mitigation programmes and guide policy planning at local and national levels to enhance the resilience of the agricultural sector against future climate extremes. Future integration of routine drought damage estimation into operational monitoring and forecasting systems would enhance early warning capabilities, improve economic preparedness against increasing weather extremes, and support more proactive adaptation strategies. 
651 4 |a Germany 
653 |a Extreme weather 
653 |a Food security 
653 |a Agricultural industry 
653 |a Crop yield 
653 |a Drought damage 
653 |a Water shortages 
653 |a Estimates 
653 |a Early warning systems 
653 |a Agriculture 
653 |a Drought 
653 |a Climatic extremes 
653 |a Crops 
653 |a Damage assessment 
653 |a Agricultural drought 
653 |a Risk assessment 
653 |a Climate change 
653 |a Farm management 
653 |a Damage 
653 |a Economics 
653 |a Precipitation 
653 |a Regions 
653 |a Corn 
653 |a Weather effects 
653 |a Temporal variability 
653 |a Agricultural production 
653 |a Weather 
653 |a Hydrology 
653 |a Drought conditions 
653 |a Empirical analysis 
653 |a Statistical models 
653 |a Temporal variations 
653 |a Hydrometeorology 
653 |a Temperature 
653 |a Pests 
653 |a Future climates 
653 |a Environmental 
700 1 |a Heilemann, Jasmin  |u Department of Economics, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany 
700 1 |a Samaniego, Luis  |u Department of Computational Hydrosystems (CHS), Helmholtz Center for Environmental Research – UFZ, 04318 Leipzig, Germany; Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany 
700 1 |a Klauer, Bernd  |u Department of Economics, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany 
700 1 |a Gawel, Erik  |u Department of Economics, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany; Faculty of Economics and Business Management, University of Leipzig, 04109 Leipzig, Germany 
700 1 |a Klassert, Christian  |u Department of Economics, Helmholtz Centre for Environmental Research – UFZ, 04318 Leipzig, Germany 
773 0 |t Natural Hazards and Earth System Sciences  |g vol. 25, no. 6 (2025), p. 2115 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3225785254/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3225785254/fulltext/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3225785254/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch