Evaluating residual stress in additively manufactured nitinol shape memory alloy

Guardado en:
Bibliografiske detaljer
Udgivet i:NPJ Advanced Manufacturing vol. 2, no. 1 (Dec 2025), p. 16
Hovedforfatter: Rangaswamy, Sampreet
Andre forfattere: Chekotu, Josiah Cherian, Gillick, Thomas, Hughes, Cian, Nicholl, Jayne, Easton, David, Şimşir, Caner, Brabazon, Dermot
Udgivet:
Nature Publishing Group
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3225849542
003 UK-CbPIL
022 |a 3004-8621 
024 7 |a 10.1038/s44334-025-00027-y  |2 doi 
035 |a 3225849542 
045 2 |b d20251201  |b d20251231 
100 1 |a Rangaswamy, Sampreet  |u Dublin City University, Advanced Processing Technology Research Centre, School of Mechanical & Manufacturing Engineering, Dublin, Ireland (GRID:grid.15596.3e) (ISNI:0000 0001 0238 0260); Dublin City University, I-Form Advanced Manufacturing Research Centre, Dublin, Ireland (GRID:grid.15596.3e) (ISNI:0000000102380260) 
245 1 |a Evaluating residual stress in additively manufactured nitinol shape memory alloy 
260 |b Nature Publishing Group  |c Dec 2025 
513 |a Journal Article 
520 3 |a This study provides a comprehensive analysis of residual stress characteristics in nitinol parts fabricated via laser powder bed fusion (PBF-LB). Unlike previous works that primarily focus on qualitative assessments or single-measurement techniques, this research employs a multi-modal experimental approach, Electronic Speckle Pattern Interferometry-Hole Drilling (ESPI-HD) and X-ray Diffraction (XRD), to achieve a more precise and spatially resolved evaluation of residual stress distribution. Furthermore, the study establishes a direct correlation between residual stress evolution and in situ pyrometric melt pool temperature data, an aspect that has not been extensively explored in prior investigations. A key novel finding is the non-monotonic relationship between volumetric energy density (VED) and residual stress. In this work, laser power was kept constant, and VED was varied by adjusting scanning speed and hatch spacing. The results show that the average residual stress initially increases with decreasing scan speed and hatch spacing, plateaus at a critical threshold, and subsequently decreases. However, residual stress was also found to vary in the build direction, indicating the complex stress distributions and accommodation mechanisms within the material. Additionally, an inverse relationship was recorded between the thermal gradient and VED which challenges conventional assumptions about their relationship. These insights offer a new perspective on optimizing PBF-LB process parameters for enhanced structural performance and long-term reliability of additively manufactured nitinol. 
653 |a Heat treating 
653 |a Interferometry 
653 |a Powder beds 
653 |a Speckle patterns 
653 |a Residual stress 
653 |a Lasers 
653 |a Temperature 
653 |a Intermetallic compounds 
653 |a Equilibrium 
653 |a Melting 
653 |a Measurement techniques 
653 |a Methods 
653 |a Diffraction patterns 
653 |a Stress analysis 
653 |a Shape memory alloys 
653 |a Additive manufacturing 
653 |a Melt pools 
653 |a Stress distribution 
653 |a Nickel titanides 
653 |a Electronic speckle pattern interferometry 
653 |a Process parameters 
700 1 |a Chekotu, Josiah Cherian  |u Dublin City University, Advanced Processing Technology Research Centre, School of Mechanical & Manufacturing Engineering, Dublin, Ireland (GRID:grid.15596.3e) (ISNI:0000 0001 0238 0260); Dublin City University, I-Form Advanced Manufacturing Research Centre, Dublin, Ireland (GRID:grid.15596.3e) (ISNI:0000000102380260) 
700 1 |a Gillick, Thomas  |u Dublin City University, Advanced Processing Technology Research Centre, School of Mechanical & Manufacturing Engineering, Dublin, Ireland (GRID:grid.15596.3e) (ISNI:0000 0001 0238 0260); Dublin City University, I-Form Advanced Manufacturing Research Centre, Dublin, Ireland (GRID:grid.15596.3e) (ISNI:0000000102380260) 
700 1 |a Hughes, Cian  |u Dublin City University, Advanced Processing Technology Research Centre, School of Mechanical & Manufacturing Engineering, Dublin, Ireland (GRID:grid.15596.3e) (ISNI:0000 0001 0238 0260); Dublin City University, I-Form Advanced Manufacturing Research Centre, Dublin, Ireland (GRID:grid.15596.3e) (ISNI:0000000102380260) 
700 1 |a Nicholl, Jayne  |u University of Strathclyde, National Manufacturing Institute Scotland, Glasgow, UK (GRID:grid.11984.35) (ISNI:0000 0001 2113 8138) 
700 1 |a Easton, David  |u University of Strathclyde, National Manufacturing Institute Scotland, Glasgow, UK (GRID:grid.11984.35) (ISNI:0000 0001 2113 8138) 
700 1 |a Şimşir, Caner  |u Middle East Technical University, Department of Metallurgical and Materials Engineering, Ankara, Turkey (GRID:grid.6935.9) (ISNI:0000 0001 1881 7391) 
700 1 |a Brabazon, Dermot  |u Dublin City University, Advanced Processing Technology Research Centre, School of Mechanical & Manufacturing Engineering, Dublin, Ireland (GRID:grid.15596.3e) (ISNI:0000 0001 0238 0260); Dublin City University, I-Form Advanced Manufacturing Research Centre, Dublin, Ireland (GRID:grid.15596.3e) (ISNI:0000000102380260) 
773 0 |t NPJ Advanced Manufacturing  |g vol. 2, no. 1 (Dec 2025), p. 16 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3225849542/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3225849542/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3225849542/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch