Design and implementation of piano audio automatic music transcription algorithm based on convolutional neural network

Guardado en:
Detalles Bibliográficos
Publicado en:EURASIP Journal on Audio, Speech, and Music Processing vol. 2025, no. 1 (Dec 2025), p. 26
Autor principal: Li, Mengshan
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3226009607
003 UK-CbPIL
022 |a 1687-4714 
022 |a 1687-4722 
024 7 |a 10.1186/s13636-025-00412-7  |2 doi 
035 |a 3226009607 
045 2 |b d20251201  |b d20251231 
084 |a 130317  |2 nlm 
100 1 |a Li, Mengshan  |u Ningbo Open University, College of Geriatric Education, Ningbo, China 
245 1 |a Design and implementation of piano audio automatic music transcription algorithm based on convolutional neural network 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a This paper presents the design and implementation of an automatic music transcription algorithm for piano audio, utilizing an optimized convolutional neural network with optimal parameters. In this study, we adopt the cepstral coefficient derived from cochlear filters, a method commonly used in speech signal processing, for extracting features from transformed musical audio. Conventional convolutional neural networks often rely on a universally shared convolutional kernel when processing piano audio, but this approach fails to account for the variations in information across different frequency bands. To address this, we select 24 Mel filters, each featuring a distinct center frequency ranging from 105 to 19,093 Hz, which aligns with the 44,100 Hz sampling rate of the converted music. This setup enables the system to effectively capture the key characteristics of piano audio signals across a wide frequency range, providing a solid frequency-domain foundation for the subsequent music transcription algorithms. 
653 |a Piano 
653 |a Musical instruments 
653 |a Sound filters 
653 |a Machine learning 
653 |a Music 
653 |a Automatic classification 
653 |a Signal processing 
653 |a Wavelet transforms 
653 |a Artificial intelligence 
653 |a Adaptability 
653 |a Fourier transforms 
653 |a Artificial neural networks 
653 |a Optimization 
653 |a Neural networks 
653 |a Frequency ranges 
653 |a Frequencies 
653 |a Algorithms 
653 |a Information processing 
653 |a Audio signals 
653 |a Audio data 
653 |a Pianos 
653 |a Information retrieval 
653 |a Parameter estimation 
773 0 |t EURASIP Journal on Audio, Speech, and Music Processing  |g vol. 2025, no. 1 (Dec 2025), p. 26 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3226009607/abstract/embedded/2AXJIZYYTBW5RQEH?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3226009607/fulltext/embedded/2AXJIZYYTBW5RQEH?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3226009607/fulltextPDF/embedded/2AXJIZYYTBW5RQEH?source=fedsrch