Dynamic scheduling strategies for cloud-based load balancing in parallel and distributed systems

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Cloud Computing vol. 14, no. 1 (Dec 2025), p. 33
1. Verfasser: Albalawi, Nasser S.
Veröffentlicht:
Springer Nature B.V.
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3226011203
003 UK-CbPIL
022 |a 2192-113X 
024 7 |a 10.1186/s13677-025-00757-6  |2 doi 
035 |a 3226011203 
045 2 |b d20251201  |b d20251231 
084 |a 243929  |2 nlm 
100 1 |a Albalawi, Nasser S.  |u Northern Border University, Department of Computer Sciences, Rafha, Saudi Arabia (GRID:grid.449533.c) (ISNI:0000 0004 1757 2152) 
245 1 |a Dynamic scheduling strategies for cloud-based load balancing in parallel and distributed systems 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Actual load balancing in parallel and distributed systems ruins a serious task due to workloads’ dynamic nature and resource availability. Existing scheduling procedures continually fail to regulate real-time alterations, leading to suboptimal performance and resource underutilization. Our study validates dynamic and effective load distribution by combining novel systems and optimization techniques to handle these issues. We utilize a comprehensive dynamic scheduling approach in this work to provide efficient load balancing in distributed and parallel systems. In this example, we start by using Round-Robin Allocation with Sunflower Whale Optimization (RRA-SWO) to perform an allocation procedure. The allocation step is followed by the Hybrid Ant Genetic Algorithm (HAGA), which is used to schedule tasks in parallel. The Least Response Time (LRT) technique for the Load Monitoring procedures will be developed once the job scheduling is complete. The Harmony Search Algorithm with Linear Regression (LR-HSA) is then used to do Distributed Computing-based Load Prediction and Adjustment. Alongside ongoing observation, this is carried out. Finally, we use the Least Recently Used (LRU) technique to do dynamic load balancing. Performance evaluations are using CloudSim and NetBeans 12.3, metrics like Packet Delivery Ratio at 98 (%), Average Response Time at 65 (s), Task Success Rate at 95 (%), Memory Utilization Rate at 80 (%), and Throughput at 97 (%) are all analyzed to validate our strategy. 
653 |a Scheduling 
653 |a Software 
653 |a Task scheduling 
653 |a Performance evaluation 
653 |a Dynamic loads 
653 |a Response time 
653 |a Regression analysis 
653 |a Genetic algorithms 
653 |a Optimization 
653 |a Resource scheduling 
653 |a Search algorithms 
653 |a Real time 
653 |a Cloud computing 
653 |a Workloads 
653 |a Energy consumption 
653 |a Distributed processing 
653 |a Load balancing 
653 |a Computer networks 
653 |a Resource management 
653 |a Efficiency 
773 0 |t Journal of Cloud Computing  |g vol. 14, no. 1 (Dec 2025), p. 33 
786 0 |d ProQuest  |t Research Library 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3226011203/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3226011203/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3226011203/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch