Mapping global floods with 10 years of satellite radar data

Gardado en:
Detalles Bibliográficos
Publicado en:Nature Communications vol. 16, no. 1 (2025), p. 5762
Autor Principal: Misra, Amit
Outros autores: White, Kevin, Nsutezo, Simone Fobi, Straka, William, Lavista, Juan
Publicado:
Nature Publishing Group
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3226269274
003 UK-CbPIL
022 |a 2041-1723 
024 7 |a 10.1038/s41467-025-60973-1  |2 doi 
035 |a 3226269274 
045 2 |b d20250101  |b d20251231 
084 |a 145839  |2 nlm 
100 1 |a Misra, Amit  |u Microsoft AI for Good Research Lab, Redmond, USA 
245 1 |a Mapping global floods with 10 years of satellite radar data 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Floods cause extensive global damage annually, making effective monitoring essential. While satellite observations have proven invaluable for flood detection and tracking, comprehensive global flood datasets spanning extended time periods remain scarce. In this study, we introduce a deep learning flood detection model that leverages the cloud-penetrating capabilities of Sentinel-1 Synthetic Aperture Radar (SAR) satellite imagery, enabling consistent flood extent mapping through cloud cover and in both day and night conditions. By applying this model to 10 years of SAR data, we create a unique, longitudinal global flood extent dataset with predictions unaffected by cloud coverage, offering comprehensive and consistent insights into historically flood-prone areas over the past decade. We use our model predictions to identify historically flood-prone areas in Ethiopia and demonstrate real-time disaster response capabilities during the May 2024 floods in Kenya. Additionally, our longitudinal analysis reveals potential increasing trends in global flood extent over time, although further validation is required to explore links to climate change. To maximize impact, we provide public access to both our model predictions and a code repository, empowering researchers and practitioners worldwide to advance flood monitoring and enhance disaster response strategies.Analysis of 10 years of satellite radar data with a deep learning model reveals historical flood patterns often missed in prior datasets. This dataset also enables analysis of trends in flooding, showing hints of increases in flood extent over time. 
651 4 |a Europe 
653 |a Climate change 
653 |a Surface water 
653 |a Deep learning 
653 |a Datasets 
653 |a Flood damage 
653 |a Trends 
653 |a Radar 
653 |a Radar data 
653 |a Floods 
653 |a Cloud cover 
653 |a Flood mapping 
653 |a Satellite imagery 
653 |a Historic floods 
653 |a Disaster management 
653 |a Radar imaging 
653 |a Monitoring 
653 |a Disasters 
653 |a Predictions 
653 |a Synthetic aperture radar 
653 |a Sensors 
653 |a Maps 
653 |a Mapping 
653 |a Emergency communications systems 
653 |a Archives & records 
653 |a Satellite observation 
653 |a Public access 
653 |a Real time 
653 |a Satellites 
653 |a Flood predictions 
653 |a Environmental 
700 1 |a White, Kevin  |u Microsoft AI for Good Research Lab, Redmond, USA 
700 1 |a Nsutezo, Simone Fobi  |u Microsoft AI for Good Research Lab, Redmond, USA 
700 1 |a Straka, William  |u University of Wisconsin-Madison, Cooperative Institute for Meteorological Satellite Studies, Madison, USA (GRID:grid.14003.36) (ISNI:0000 0001 2167 3675) 
700 1 |a Lavista, Juan  |u Microsoft AI for Good Research Lab, Redmond, USA (GRID:grid.14003.36) 
773 0 |t Nature Communications  |g vol. 16, no. 1 (2025), p. 5762 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3226269274/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3226269274/fulltext/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3226269274/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch