Cross-linked multifunctional bilayer polymer buffer for enhanced efficiency and stability in perovskite solar cells

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:Nature Communications vol. 16, no. 1 (2025), p. 6038
מחבר ראשי: Li, Yuheng
מחברים אחרים: Li, Lin, Zeng, Haipeng, Lan, Chunxiang, Yang, Shaomin, Zheng, Ziwei, Zeng, Miaomiao, Shi, Yingying, Gao, Kai, Cui, Lianmeng, Guo, Rui, Guo, Jing, Hu, Bin, Rong, Yaoguang, Xie, Haibing, Li, Xiong
יצא לאור:
Nature Publishing Group
נושאים:
גישה מקוונת:Citation/Abstract
Full Text
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3226280983
003 UK-CbPIL
022 |a 2041-1723 
024 7 |a 10.1038/s41467-025-61294-z  |2 doi 
035 |a 3226280983 
045 2 |b d20250101  |b d20251231 
084 |a 145839  |2 nlm 
100 1 |a Li, Yuheng  |u Huazhong University of Science and Technology (HUST), Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223) 
245 1 |a Cross-linked multifunctional bilayer polymer buffer for enhanced efficiency and stability in perovskite solar cells 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Addressing the stability challenges induced by the chemical interactions between metal electrodes and perovskite components is essential for high-performance perovskite solar cells (PSCs). Herein, we design a bilayer multifunctional polymer buffer composed of polyethyleneimine (PEI) and 2-((2-methyl-3-(2-((2-methylbutanoyl)oxy)ethoxy)−3-oxopropyl)thio)−3-(methylthio)succinic acid (PDMEA), inserting into the interface of metal electrode/transporting layer. This buffer mitigates metal atom diffusion by forming thioether-metal-carboxyl chelation rings between the metal layer and PDMEA. Additionally, it facilitates efficient electron transport and suppresses interfacial recombination through an in-situ cross-linking between the carboxyl groups of PDMEA and the amine groups of PEI based on Lewis acid-base reaction. Consequently, this design effectively reduces undesirable metal/ion interdiffusion during device fabrication and operation. The resulting PSCs with the PEI/PDMEA buffer achieve certified power conversion efficiencies (PCEs) of 26.46% (0.1 cm2) and 24.70% (1.01 cm2), demonstrating enhanced thermal and operational stability. We anticipate that this buffer design strategy, which forms bilayer polymer buffers via cross-linking of polymers with distinct functionalities, will inspire the rational design of robust buffers for highly efficient and stable PSCs and other electronic devices.Addressing the stability challenges from metal electrodes/perovskite components chemical interactions is essential for high-performance perovskite solar cells. Here, authors design a bilayer polymer buffer to mitigate metal/ion interdiffusion, realizing a certified efficiency of 26.46%. 
653 |a Polymers 
653 |a Acids 
653 |a Electrodes 
653 |a Metals 
653 |a Succinic acid 
653 |a Electron transport 
653 |a Polymerization 
653 |a Chelation 
653 |a Solar cells 
653 |a Chemical interactions 
653 |a Electronic equipment 
653 |a Design 
653 |a Buffers 
653 |a Crosslinking 
653 |a Photovoltaic cells 
653 |a Efficiency 
653 |a Perovskites 
653 |a Fabrication 
653 |a Spectrum analysis 
653 |a Fourier transforms 
653 |a Polyethyleneimine 
653 |a Interdiffusion 
653 |a Lewis acid 
653 |a Energy conversion efficiency 
653 |a Diffusion layers 
653 |a Stability 
653 |a Interfaces 
653 |a Environmental 
700 1 |a Li, Lin  |u Huazhong University of Science and Technology (HUST), Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223); Beijing Academy of Science and Technology (BJAST), Institute of New Materials and Advanced Manufacturing, Beijing, China (GRID:grid.418265.c) (ISNI:0000 0004 0403 1840) 
700 1 |a Zeng, Haipeng  |u Huazhong University of Science and Technology (HUST), Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223) 
700 1 |a Lan, Chunxiang  |u Huazhong University of Science and Technology (HUST), Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223) 
700 1 |a Yang, Shaomin  |u Huazhong University of Science and Technology (HUST), Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223) 
700 1 |a Zheng, Ziwei  |u Hainan University, School of Physics and Optoelectronic Engineering, Haikou, China (GRID:grid.428986.9) (ISNI:0000 0001 0373 6302) 
700 1 |a Zeng, Miaomiao  |u Huazhong University of Science and Technology (HUST), Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223) 
700 1 |a Shi, Yingying  |u Huazhong University of Science and Technology (HUST), Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223) 
700 1 |a Gao, Kai  |u Beijing Academy of Science and Technology (BJAST), Institute of New Materials and Advanced Manufacturing, Beijing, China (GRID:grid.418265.c) (ISNI:0000 0004 0403 1840) 
700 1 |a Cui, Lianmeng  |u Wuhan University of Technology, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, China (GRID:grid.162110.5) (ISNI:0000 0000 9291 3229) 
700 1 |a Guo, Rui  |u Hainan University, School of Physics and Optoelectronic Engineering, Haikou, China (GRID:grid.428986.9) (ISNI:0000 0001 0373 6302) 
700 1 |a Guo, Jing  |u Hainan University, School of Physics and Optoelectronic Engineering, Haikou, China (GRID:grid.428986.9) (ISNI:0000 0001 0373 6302); Hainan University, Center for Advanced Studies in Precision Instruments, Haikou, China (GRID:grid.428986.9) (ISNI:0000 0001 0373 6302) 
700 1 |a Hu, Bin  |u Huazhong University of Science and Technology (HUST), Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223); Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223) 
700 1 |a Rong, Yaoguang  |u Wuhan University of Technology, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, China (GRID:grid.162110.5) (ISNI:0000 0000 9291 3229) 
700 1 |a Xie, Haibing  |u Shenzhen University, Institute for Advanced Study, Shenzhen, China (GRID:grid.263488.3) (ISNI:0000 0001 0472 9649) 
700 1 |a Li, Xiong  |u Huazhong University of Science and Technology (HUST), Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223); Hainan University, School of Physics and Optoelectronic Engineering, Haikou, China (GRID:grid.428986.9) (ISNI:0000 0001 0373 6302) 
773 0 |t Nature Communications  |g vol. 16, no. 1 (2025), p. 6038 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3226280983/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3226280983/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3226280983/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch