Multi-objective optimisation of path and space utilisation in landscape garden green space design

Guardado en:
Bibliografiske detaljer
Udgivet i:PLoS One vol. 20, no. 7 (Jul 2025), p. e0326374
Hovedforfatter: Yu, Jia
Andre forfattere: Song, Jiazhe, Lan, Huihui, Zhang, Yugui
Udgivet:
Public Library of Science
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3226286342
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0326374  |2 doi 
035 |a 3226286342 
045 2 |b d20250701  |b d20250731 
084 |a 174835  |2 nlm 
100 1 |a Yu, Jia 
245 1 |a Multi-objective optimisation of path and space utilisation in landscape garden green space design 
260 |b Public Library of Science  |c Jul 2025 
513 |a Journal Article 
520 3 |a This study addresses the multi-objective optimization problem in landscape garden green space design, focusing on optimizing space utilization efficiency, path efficiency, and aesthetic quality. We compare various multi-objective optimization algorithms to solve the problem We compare various multi-objective optimization algorithms to solve the problem, applied to the urban environment of Tongzhou District, which is characterized by rapid urbanization and high population density. Experimental results demonstrate that MOEAs outperforms other optimization algorithms such as GA, PSO, ACO, and SA in all three objectives. Specifically, MOEAs achieved a space utilization efficiency of 90.2%, a path length of 140.3 m, and an aesthetic quality score of 9.2, surpassing the best results from GA (85.3%, 150.2 m, 8.4), PSO (88.5%, 148.6 m, 8.6), ACO (82.4%, 160.5 m, 7.9), and SA (80.1%, 162.4 m, 7.5). In conclusion, MOEAs provides a superior solution for optimizing landscape garden green space design, offering the best balance between spatial efficiency, path optimization, and aesthetic quality, particularly for urban areas like Tongzhou. 
653 |a Green infrastructure 
653 |a Urbanization 
653 |a Urban environments 
653 |a User experience 
653 |a Pheromones 
653 |a Population density 
653 |a Algorithms 
653 |a Optimization techniques 
653 |a Mutation 
653 |a Landscape architecture 
653 |a Efficiency 
653 |a Urban areas 
653 |a Layouts 
653 |a Multiple objective analysis 
653 |a Objectives 
653 |a Design 
653 |a Ant colony optimization 
653 |a Foraging behavior 
653 |a Pareto optimum 
653 |a Aesthetics 
653 |a Genetic algorithms 
653 |a Design optimization 
653 |a Optimization algorithms 
653 |a Gardens & gardening 
653 |a Economic 
700 1 |a Song, Jiazhe 
700 1 |a Lan, Huihui 
700 1 |a Zhang, Yugui 
773 0 |t PLoS One  |g vol. 20, no. 7 (Jul 2025), p. e0326374 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3226286342/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3226286342/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3226286342/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch