Breaking language barriers with image detection and natural language processing model for English to Spanish translation

Gardado en:
Detalles Bibliográficos
Publicado en:SN Applied Sciences vol. 7, no. 7 (Jul 2025), p. 682
Autor Principal: Salman, Bakhita
Outros autores: Lopez, Andres, Delapena, Nathanielle
Publicado:
Springer Nature B.V.
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3226286529
003 UK-CbPIL
022 |a 2523-3963 
022 |a 2523-3971 
024 7 |a 10.1007/s42452-025-06891-9  |2 doi 
035 |a 3226286529 
045 2 |b d20250701  |b d20250731 
100 1 |a Salman, Bakhita  |u Texas A&M International University, School of Engineering, Laredo, USA (GRID:grid.264755.7) (ISNI:0000 0000 8747 9982) 
245 1 |a Breaking language barriers with image detection and natural language processing model for English to Spanish translation 
260 |b Springer Nature B.V.  |c Jul 2025 
513 |a Journal Article 
520 3 |a This research proposes an advanced approach that integrates multiple image detection techniques and natural language processing (NLP) methodologies for English-to-Spanish language translation. The developed software accepts an image as input, which undergoes preprocessing using adaptive thresholding, morphological transformations, and edge detection algorithms such as Canny and Sobel operators to enhance text clarity. Text detection and localization are achieved using the EfficientDet and EAST (Efficient and Accurate Scene Text) detector frameworks, followed by Optical Character Recognition (OCR) using PyTesseract, a wrapper for Google’s Tesseract OCR. The detected text is passed to an NLP system for translation, which employs a sequence-to-sequence transformer model implemented with Keras, TensorFlow, and NumPy. Additional techniques, such as Byte Pair Encoding (BPE) for text tokenization and positional encoding for transformer-based attention, improve translation efficiency. An English-Spanish dictionary from Anki and a large parallel corpus dataset were used for training. The NLP pipeline leverages semantic analysis, part-of-speech tagging, and dependency parsing to preserve grammatical structure and context. Fine-tuning the transformer model parameters, including learning rate scheduling and gradient clipping, further optimized system performance. The research demonstrates a 93.7% translation accuracy, achieved by combining state-of-the-art image processing algorithms, advanced transformer architectures, and a robust training dataset. This hybrid approach significantly improves the accuracy of English-to-Spanish translations, validating the effectiveness of integrating computer vision and NLP technologies.Article highlights<list list-type="bullet"><list-item></list-item>Enhanced translation accuracy—AI-powered translation models improve English-to-Spanish accuracy by preserving grammar, sentence structure, and contextual meaning. The integration of deep learning and NLP ensures precise translations across various text types.<list-item>Optimized image-to-text extraction—advanced OCR techniques, including adaptive thresholding, morphological transformations, and deep learning-based text detection, enhance the accuracy of extracting text from images, even in complex backgrounds or poor lighting conditions.</list-item><list-item>Scalable AI solutions for real-world applications—the combination of computer vision and NLP enables practical applications in multilingual communication, document translation, accessibility for visually impaired users, and real-time text recognition for travel, business, and education. The AI-driven approach ensures scalability across diverse environments and languages.</list-item> 
653 |a Software 
653 |a Algorithms 
653 |a Optical character recognition 
653 |a Language 
653 |a Image detection 
653 |a Image processing 
653 |a Computer vision 
653 |a Machine translation 
653 |a Training 
653 |a Localization 
653 |a Machine learning 
653 |a Language translation 
653 |a Deep learning 
653 |a Coding 
653 |a Marking and tracking techniques 
653 |a Accuracy 
653 |a Datasets 
653 |a Translation 
653 |a Artificial intelligence 
653 |a Sign language 
653 |a Taxonomy 
653 |a Spanish language 
653 |a Natural language processing 
653 |a Multilingualism 
653 |a Linguistics 
653 |a Literature reviews 
653 |a Real time 
653 |a English language 
653 |a Edge detection 
653 |a Economic 
700 1 |a Lopez, Andres  |u Texas A&amp;M International University, School of Engineering, Laredo, USA (GRID:grid.264755.7) (ISNI:0000 0000 8747 9982) 
700 1 |a Delapena, Nathanielle  |u Texas A&amp;M International University, School of Engineering, Laredo, USA (GRID:grid.264755.7) (ISNI:0000 0000 8747 9982) 
773 0 |t SN Applied Sciences  |g vol. 7, no. 7 (Jul 2025), p. 682 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3226286529/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3226286529/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3226286529/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch