A survey of sensors based autonomous unmanned aerial vehicle (UAV) localization techniques

Guardado en:
Detalles Bibliográficos
Publicado en:Complex & Intelligent Systems vol. 11, no. 8 (Aug 2025), p. 371
Autor principal: Liu, Haiqiao
Otros Autores: Long, Qing, Yi, Bing, Jiang, Wen
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3226844689
003 UK-CbPIL
022 |a 2199-4536 
022 |a 2198-6053 
024 7 |a 10.1007/s40747-025-01961-2  |2 doi 
035 |a 3226844689 
045 2 |b d20250801  |b d20250831 
100 1 |a Liu, Haiqiao  |u Hunan Institute of Engineering, School of Electrical and Information Engineering, Hunan, China (GRID:grid.459468.2) (ISNI:0000 0004 1793 4133) 
245 1 |a A survey of sensors based autonomous unmanned aerial vehicle (UAV) localization techniques 
260 |b Springer Nature B.V.  |c Aug 2025 
513 |a Journal Article 
520 3 |a Autonomous localization methods for Unmanned Aerial Vehicles (UAVs) have significant application potential in complex environments. This paper presents a comprehensive survey of UAV localization techniques, focusing on both pure vision-based and sensor-assisted approaches. For pure vision-based localization, the survey emphasizes key technologies for feature descriptor generation, advancements in similarity measurement criteria, and optimized computational strategies. The impact of these technologies on improving computational efficiency and localization accuracy. In the context of sensor-assisted multi-source UAV localization, the applications of filtering-based fusion, optimization-based fusion, and deep learning-based fusion methods are discussed. A detailed analysis demonstrates the advantages of multi-modal data fusion in improving robustness and accuracy. Despite significant progress in localization accuracy and adaptability to complex environments, challenges remain in adapting to low-texture environments, optimizing fusion strategies, and addressing computational resource limitations. Finally, the paper discusses future directions for the research and implementation of UAV autonomous localization methods. 
653 |a Global positioning systems--GPS 
653 |a Accuracy 
653 |a Deep learning 
653 |a Unmanned aerial vehicles 
653 |a Magnetic fields 
653 |a Sensors 
653 |a Neural networks 
653 |a Optimization 
653 |a Data integration 
653 |a Methods 
653 |a Algorithms 
653 |a Modal data 
653 |a Research & development--R&D 
653 |a Localization 
700 1 |a Long, Qing  |u Graduate School of Hunan University of Engineering, Hunan, China (GRID:grid.67293.39) 
700 1 |a Yi, Bing  |u Hunan Institute of Engineering, School of Materials and Chemical Engineering, Hunan, China (GRID:grid.459468.2) (ISNI:0000 0004 1793 4133) 
700 1 |a Jiang, Wen  |u Graduate School of Hunan University of Engineering, Hunan, China (GRID:grid.67293.39) 
773 0 |t Complex & Intelligent Systems  |g vol. 11, no. 8 (Aug 2025), p. 371 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3226844689/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3226844689/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3226844689/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch