A frequency regulation method for zero-carbon smart building islanded microgrids based on model-free adaptive dynamic programming

Na minha lista:
Detalhes bibliográficos
Publicado no:Journal of Physics: Conference Series vol. 3043, no. 1 (Jun 2025), p. 012136
Autor principal: Yin, Furong
Outros Autores: Zhu, Chuang, Guo, Yinan, Zhongyang Ming
Publicado em:
IOP Publishing
Assuntos:
Acesso em linha:Citation/Abstract
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3227051629
003 UK-CbPIL
022 |a 1742-6588 
022 |a 1742-6596 
024 7 |a 10.1088/1742-6596/3043/1/012136  |2 doi 
035 |a 3227051629 
045 2 |b d20250601  |b d20250630 
100 1 |a Yin, Furong  |u State Grid (Shanghai) Smart Grid R&D Investment Co., LTD. Shenyang, Liaoning, 110299, China 
245 1 |a A frequency regulation method for zero-carbon smart building islanded microgrids based on model-free adaptive dynamic programming 
260 |b IOP Publishing  |c Jun 2025 
513 |a Journal Article 
520 3 |a With the widespread adoption of zero-carbon smart buildings, integrating multiple smart buildings into an islanded microgrid has become an essential approach for achieving sustainable energy management. However, islanded microgrids face challenges in maintaining frequency stability, particularly in the presence of system parameter uncertainties and dynamic load variations. This paper presents a frequency regulation method based on model-free adaptive dynamic programming (ADP) specifically designed for zero-carbon smart building islanded microgrids. Unlike traditional approaches that rely on precise system models and fixed load parameters, the proposed ADP controller effectively addresses model uncertainties, operational mode switching, and time-varying loads without requiring prior knowledge of the system dynamics. By treating each smart building as an agent within a multi-agent system, the controller utilizes local frequency measurements and communication between buildings to achieve overall frequency synchronization and stability. Simulation experiments demonstrate the effectiveness of the proposed method. The approach outlined in this paper provides robust technical support for the reliable and sustainable operation of future zero-carbon smart building communities. 
653 |a Energy management 
653 |a Dynamic programming 
653 |a Electrical loads 
653 |a Dynamic loads 
653 |a Distributed generation 
653 |a Load fluctuation 
653 |a Carbon 
653 |a Frequency measurement 
653 |a Smart buildings 
653 |a System dynamics 
653 |a Multiagent systems 
653 |a Frequency stability 
653 |a Controllers 
653 |a Parameter uncertainty 
653 |a Frequency synchronization 
700 1 |a Zhu, Chuang  |u State Grid Yingda Carbon Asset Management (Shanghai) Co., LTD. Shenyang, Liaoning, 110084, China 
700 1 |a Guo, Yinan  |u State Grid Yingda Carbon Asset Management (Shanghai) Co., LTD. Shenyang, Liaoning, 110084, China 
700 1 |a Zhongyang Ming  |u The School of Information Science and Engineering Northeastern University , Shenyang, Liaoning, 110004, China 
773 0 |t Journal of Physics: Conference Series  |g vol. 3043, no. 1 (Jun 2025), p. 012136 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3227051629/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3227051629/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch