Advancement in public health through machine learning: a narrative review of opportunities and ethical considerations

保存先:
書誌詳細
出版年:Journal of Big Data vol. 12, no. 1 (Jul 2025), p. 154
第一著者: Dhanda, Sumit Singh
その他の著者: Panwar, Deepak, Lin, Chia-Chen, Sharma, Tarun Kumar, Rastogi, Deependra, Bindewari, Shantanu, Singh, Anand, Li, Yung-Hui, Agarwal, Neha, Agarwal, Saurabh
出版事項:
Springer Nature B.V.
主題:
オンライン・アクセス:Citation/Abstract
Full Text
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3227168250
003 UK-CbPIL
022 |a 2196-1115 
024 7 |a 10.1186/s40537-025-01201-x  |2 doi 
035 |a 3227168250 
045 2 |b d20250701  |b d20250731 
100 1 |a Dhanda, Sumit Singh  |u IILM University, School of Computer Science and Engineering, Greater Noida, India 
245 1 |a Advancement in public health through machine learning: a narrative review of opportunities and ethical considerations 
260 |b Springer Nature B.V.  |c Jul 2025 
513 |a Journal Article 
520 3 |a This narrative review presents a comprehensive and state-of-the-art synthesis of how machine learning (ML) is transforming public health through enhanced prediction, personalized treatment, real-time surveillance, and intelligent resource optimization. Drawing from 170 peer-reviewed studies published up to 2024/2025, this work uniquely integrates cross-domain insights spanning disease outbreak forecasting, genomic data analysis, personalized medicine, mental health monitoring, and public health infrastructure planning. The novelty of this review lies in its multidimensionality. It merges technical efficacy, ethical challenges, and future trends into a unified narrative. Our findings show substantial performance gains across domains: for example, ML models such as LightGBM, GRU neural networks, and LSTM achieved disease prediction accuracies ranging from 88 to 95%. In genomics, ML methods enabled nuanced disease subtype discovery and improved the accuracy of cancer risk assessment and pharmacogenomic modeling. Mental health prediction systems based on NLP and wearable data delivered up to 91% accuracy in stress and depression detection, while hospital resource forecasting models using deep learning minimized errors in predicting emergency admissions. Ethically, this review surfaces critical issues, including algorithmic bias, data privacy concerns in mental health analytics, and the interpretability of black-box models used in outbreak surveillance. A forward-looking discussion identifies future priorities such as the integration of multi-omics data, deployment of explainable AI, and equitable data inclusion frameworks. This review stands out by not only cataloguing applications but also offering a systems-level perspective on how ML can equitably and ethically scale to support public health strategies globally. It is among the first narrative reviews to concurrently evaluate ML’s predictive power, ethical constraints, and domain-specific improvements across all core pillars of public health. 
653 |a Infectious diseases 
653 |a Mental health 
653 |a Surveillance 
653 |a Datasets 
653 |a Trends 
653 |a Health care policy 
653 |a Epidemiology 
653 |a Boolean 
653 |a Public health 
653 |a Optimization 
653 |a Chronic illnesses 
653 |a Environmental health 
653 |a Data analysis 
653 |a Disease prevention 
653 |a Ethics 
653 |a Machine learning 
653 |a Explainable artificial intelligence 
653 |a Tempering 
653 |a Keywords 
653 |a Global health 
653 |a Customization 
653 |a Accuracy 
653 |a Research methodology 
653 |a Outbreaks 
653 |a Emergency preparedness 
653 |a Health education 
653 |a Neural networks 
653 |a Artificial intelligence 
653 |a Epidemics 
653 |a Well being 
653 |a Algorithms 
653 |a Deep learning 
653 |a Real time 
653 |a Precision medicine 
653 |a Forecasting 
653 |a Big Data 
653 |a Cancer 
653 |a Disease 
653 |a Efficacy 
653 |a Predictions 
653 |a Infrastructure 
653 |a Privacy 
653 |a Genomics 
653 |a Intelligence 
653 |a Narratives 
653 |a Health planning 
653 |a Errors 
653 |a Risk assessment 
653 |a Ethical dilemmas 
653 |a Data 
653 |a Emergency admissions 
653 |a Hospitalization 
653 |a Deployment 
653 |a Medicine 
653 |a Public works 
653 |a Natural language processing 
700 1 |a Panwar, Deepak  |u Manipal University Jaipur, Jaipur, India (GRID:grid.411639.8) (ISNI:0000 0001 0571 5193) 
700 1 |a Lin, Chia-Chen  |u National Chin-Yi University of Technology, Department of Computer Science and Information Engineering, Taichung, Taiwan (GRID:grid.454303.5) (ISNI:0000 0004 0639 3650) 
700 1 |a Sharma, Tarun Kumar  |u Shobhit University, School of Computer Science and Engineering, Gangoh, India (GRID:grid.412575.0) (ISNI:0000 0004 1775 0764) 
700 1 |a Rastogi, Deependra  |u IILM University, School of Computer Science and Engineering, Greater Noida, India (GRID:grid.412575.0) 
700 1 |a Bindewari, Shantanu  |u IILM University, School of Computer Science and Engineering, Greater Noida, India (GRID:grid.412575.0) 
700 1 |a Singh, Anand  |u IILM University, School of Computer Science and Engineering, Greater Noida, India (GRID:grid.412575.0) 
700 1 |a Li, Yung-Hui  |u AI Research Center, Hon Hai Research Institute, Foxconn, Taipei, Taiwan (GRID:grid.471047.1) (ISNI:0000 0004 0385 8985) 
700 1 |a Agarwal, Neha  |u Yeungnam University, School of Chemical Engineering, Gyeongsan, Republic of Korea (GRID:grid.413028.c) (ISNI:0000 0001 0674 4447) 
700 1 |a Agarwal, Saurabh  |u Yeungnam University, School of Computer Science and Engineering, Gyeongsan, Republic of Korea (GRID:grid.413028.c) (ISNI:0000 0001 0674 4447) 
773 0 |t Journal of Big Data  |g vol. 12, no. 1 (Jul 2025), p. 154 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3227168250/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3227168250/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3227168250/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch