MULTI SENSOR DATA FUSION BASED ON LOCAL AND GLOBAL FOR ROOM TEMPERATURE MONITORING

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:International Journal of Mechatronics and Applied Mechanics no. 19 (2025), p. 297-308
Үндсэн зохиолч: Li, Jing
Бусад зохиолчид: Yu, Fei
Хэвлэсэн:
Editura Cefin
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3227312854
003 UK-CbPIL
022 |a 2559-4397 
022 |a 2559-6497 
024 7 |a 10.17683/ijomam/issue19  |2 doi 
035 |a 3227312854 
045 2 |b d20250101  |b d20251231 
100 1 |a Li, Jing  |u School of Artificial Intelligence, Xiamen City University, China 
245 1 |a MULTI SENSOR DATA FUSION BASED ON LOCAL AND GLOBAL FOR ROOM TEMPERATURE MONITORING 
260 |b Editura Cefin  |c 2025 
513 |a Journal Article 
520 3 |a Currently, data collection from a single sensor is no longer sufficient to meet people's information needs. To accurately predict the actual temperature, humidity, and lighting conditions in greenhouse environments and have a positive effect on vegetable cultivation, this study proposes a radial basis function neural network optimized by cuckoo search algorithm, and combines the optimized Dempster Shafer theory for greenhouse environment prediction. The optimized radial basis function of the improved cuckoo search algorithm converged at 10 iterations, and the recall rate finally converged to around 0.9. The optimized radial basis function of the improved cuckoo search algorithm was at the minimum level among the three error values, with an average reduction of 0.14, 0.25, and 0.24 compared to the other two algorithms. The humidity was reduced by an average of 0.25, 0.49, and 0.39, and the lighting was reduced by an average of 3, 27, and 2. After introducing the improved Dempster Shafer theory in the second example, the uncertainty of the final result decreased from 32.3% to 23.9%, while the output probability increased from 11.3% to 68.5%. Therefore, the radial basis function optimized by the improved cuckoo search algorithm has better prediction accuracy for various indicators in the greenhouse, while the error is small, which can significantly reduce uncertainty. This study provides a theoretical basis for the layout of greenhouse environmental monitoring equipment in the vegetable production process. 
653 |a Greenhouses 
653 |a Accuracy 
653 |a Humidity 
653 |a Neural networks 
653 |a Radial basis function 
653 |a Vegetables 
653 |a Environmental monitoring 
653 |a Sensors 
653 |a Room temperature 
653 |a Search algorithms 
653 |a Data integration 
653 |a Methods 
653 |a Algorithms 
653 |a Uncertainty 
653 |a Multisensor fusion 
653 |a Data collection 
653 |a Lighting 
700 1 |a Yu, Fei  |u School of Information Science and Engineering, South East University, China 
773 0 |t International Journal of Mechatronics and Applied Mechanics  |g no. 19 (2025), p. 297-308 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3227312854/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3227312854/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3227312854/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch