Chinese inscription restoration based on artificial intelligent models

Guardado en:
Detalles Bibliográficos
Publicado en:Heritage Science vol. 13, no. 1 (Dec 2025), p. 326
Autor principal: Wang, Zhen
Otros Autores: Li, Yujun, Li, Honglei
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3227339378
003 UK-CbPIL
022 |a 2050-7445 
024 7 |a 10.1038/s40494-025-01900-x  |2 doi 
035 |a 3227339378 
045 2 |b d20251201  |b d20251231 
084 |a 243040  |2 nlm 
100 1 |a Wang, Zhen  |u Liaoning Normal University, Digital Protection and Utilisation Laboratory of Historical and Cultural Heritage, Dalian, China (GRID:grid.440818.1) (ISNI:0000 0000 8664 1765) 
245 1 |a Chinese inscription restoration based on artificial intelligent models 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Chinese ancient inscriptions have a long history, while natural erosion and human destruction have led to many incomplete inscriptions with low-quality textual data and blurry images. With deep learning technologies, it is expected to use relevant image and language processing tasks to restore inscriptions. To improve the efficiency of restoration tasks and promote the digital protection of cultural heritage, this study used deep learning technology to restore ancient Chinese inscriptions. We combined natural language processing and computer vision technologies to train models for restoring inscriptions. The results indicated that the joint solution had advantages over every single model for incomplete character restoration. 
653 |a Calligraphy 
653 |a Machine learning 
653 |a Accuracy 
653 |a Deep learning 
653 |a Artificial intelligence 
653 |a Books 
653 |a Neural networks 
653 |a Image restoration 
653 |a Computer vision 
653 |a Natural language processing 
653 |a Image quality 
653 |a Inscriptions 
653 |a Cultural resources 
653 |a Cultural heritage 
700 1 |a Li, Yujun  |u Liaoning Normal University, School of History and Culture, Dalian, China (GRID:grid.440818.1) (ISNI:0000 0000 8664 1765) 
700 1 |a Li, Honglei  |u Liaoning Normal University, Digital Protection and Utilisation Laboratory of Historical and Cultural Heritage, Dalian, China (GRID:grid.440818.1) (ISNI:0000 0000 8664 1765) 
773 0 |t Heritage Science  |g vol. 13, no. 1 (Dec 2025), p. 326 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3227339378/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3227339378/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3227339378/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch