Machine Learning Methods of Remote Sensing Data Processing for Mapping Salt Pan Crust Dynamics in Sebkha de Ndrhamcha, Mauritania

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial Satellites vol. 60, no. 2 (2025), p. 37
1. Verfasser: LEMENKOVA, Polina
Veröffentlicht:
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3227624623
003 UK-CbPIL
022 |a 1509-3859 
022 |a 2083-6104 
022 |a 0208-841X 
024 7 |a 10.2478/arsa-2025-0003  |2 doi 
035 |a 3227624623 
045 2 |b d20250401  |b d20250630 
084 |a 188545  |2 nlm 
100 1 |a LEMENKOVA, Polina  |u Alma Mater Studiorum – Università di Bologna, Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, Bologna, Emilia-Romagna, Italy 
245 1 |a Machine Learning Methods of Remote Sensing Data Processing for Mapping Salt Pan Crust Dynamics in Sebkha de Ndrhamcha, Mauritania 
260 |b De Gruyter Brill Sp. z o.o., Paradigm Publishing Services  |c 2025 
513 |a Journal Article 
520 3 |a The advances in Machine Learning (ML) and computer technologies enabled to process satellite images using programming. Environmental applications that handle Remote Sensing (RS) data for spatial analysis use such an approach, for example, Python’s library scikit-learn using algorithms on pattern identification, predictions or image classification. This paper presents an ML method of satellite image processing using Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS). The aim is to classify multispectral Landsat images using ML for identification of changes in salt pans of West Mauritania, Africa over the period 2014–2023. We define 10 classes of land cover categories and perform analysis of geological, lithological and landscape setting, and then introduce the principles, algorithms and processing of the ML methods of GRASS GIS. The following classification models were employed to implement image classification with training: Random Forest (RF), Decision Tree, Gradient Boosting and Support Vector Machine (SVM). The results were compared with clustering performed by k-means and maximum likelihood discriminant analysis. The cartographic visualisation and validation was implemented through accuracy analysis. Results for the best performing SVM model with seven-band input produced an overall accuracy of 76%, for the RF model – 73%, compared to 69% for Decision Tree Classifier – 69% and for Gradient Boosting Classifier – 67%. The SVM model embedded in GRASS GIS generates robust land cover maps with good accuracy from multispectral satellite images. The paper demonstrated an ML-based automated approach to satellite image processing, which links Artificial Intelligence (AI) with cartographic tasks. 
651 4 |a Mauritania 
653 |a Spatial analysis 
653 |a Accuracy 
653 |a Artificial intelligence 
653 |a Data processing 
653 |a Support systems 
653 |a Algorithms 
653 |a Landsat 
653 |a Satellite imagery 
653 |a Remote sensing 
653 |a Image processing 
653 |a Machine learning 
653 |a Classification 
653 |a Discriminant analysis 
653 |a Geographic information systems 
653 |a Maps 
653 |a Land cover 
653 |a Learning algorithms 
653 |a Decision trees 
653 |a Cartography 
653 |a Spatial data 
653 |a Support vector machines 
653 |a Clustering 
653 |a Salt flats 
653 |a Image classification 
653 |a Satellites 
653 |a Environmental 
773 0 |t Artificial Satellites  |g vol. 60, no. 2 (2025), p. 37 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3227624623/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3227624623/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch