Exploring the possibilities and limitations of customized large language model to support and improve cervical cancer screening

Gardado en:
Detalles Bibliográficos
Publicado en:BMC Medical Informatics and Decision Making vol. 25 (2025), p. 1-17
Autor Principal: Angyal, Viola
Outros autores: Bertalan, Ádám, Domján, Péter, Elek Dinya
Publicado:
Springer Nature B.V.
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3227640166
003 UK-CbPIL
022 |a 1472-6947 
024 7 |a 10.1186/s12911-025-03088-3  |2 doi 
035 |a 3227640166 
045 2 |b d20250101  |b d20251231 
084 |a 58451  |2 nlm 
100 1 |a Angyal, Viola 
245 1 |a Exploring the possibilities and limitations of customized large language model to support and improve cervical cancer screening 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a BackgroundThe rapid advancement of artificial intelligence, driven by Generative Pre-trained Transformers (GPT), has transformed natural language processing. Prompt engineering plays a key role in guiding model outputs effectively. Our primary objective was to explore the possibilities and limitations of a custom GPT, developed via prompt engineering, as a patient education tool, which delivers publicly available information through a user-friendly design that facilitates more effective access to cervical cancer screening knowledge.MethodThe system was developed using the OpenAI GPT-4 model and Python programming language, with the interface built on Streamlit for cloud-based accessibility and testing. It initially presented questions to testers for preliminary assessment. For cervical cancer-related information, we referenced medical guidelines. Iterative testing optimized the prompts for quality and relevance; techniques like context provision, question chaining, and prompt-based constraints were used. Human-in-the-loop and two independent medical doctor evaluations were employed. Additionally, system performance metrics were measured.ResultThe web application was tested 115 times over a three-week period in 2024, with 87 female (76%) and 28 male (24%) participants. A total of 112 users completed the user experience questionnaire. Statistical analysis showed a significant association between age and perceived personalization (p = 0.047) and between gender and system customization (p = 0.037). Younger participants reported higher engagement, though not significantly. Females valued guidance on screening schedules and early detection, while males highlighted the usefulness of information regarding HPV vaccination and its role in preventing HPV-related cancers. Independent evaluations by medical doctors demonstrated consistent assessments of the system’s responses in terms of accuracy, clarity, and usefulness.DiscussionWhile the system demonstrates potential to enhance public health awareness and promote preventive behaviors, encouraging individuals to seek information on cervical cancer screening and HPV vaccination, its conversational capabilities remain constrained by the inherent limitations of current language model technology.ConclusionsAlthough custom GPTs can not substitute a healthcare consultations, these tools can streamline workflows, expedite information access, and support personalized care. Further research should focus on conducting well-designed randomized controlled trials to establish definitive conclusions regarding its impact and reliability.Clinical trial numberNot applicable. 
610 4 |a American Cancer Society OpenAI 
653 |a Application programming interface 
653 |a Mortality 
653 |a Females 
653 |a Python 
653 |a Prompt engineering 
653 |a Human papillomavirus 
653 |a Immunization 
653 |a Cervical cancer 
653 |a User needs 
653 |a Artificial intelligence 
653 |a Public health 
653 |a Vaccination 
653 |a Medical screening 
653 |a Patient education 
653 |a Cancer screening 
653 |a Language 
653 |a Clinical trials 
653 |a Accuracy 
653 |a Medical research 
653 |a Vaccines 
653 |a User experience 
653 |a Applications programs 
653 |a Disease prevention 
653 |a Statistical analysis 
653 |a Customization 
653 |a Physicians 
653 |a Questions 
653 |a Performance measurement 
653 |a Large language models 
653 |a Information dissemination 
653 |a Cancer 
653 |a Cloud computing 
653 |a Programming languages 
653 |a Natural language processing 
700 1 |a Bertalan, Ádám 
700 1 |a Domján, Péter 
700 1 |a Elek Dinya 
773 0 |t BMC Medical Informatics and Decision Making  |g vol. 25 (2025), p. 1-17 
786 0 |d ProQuest  |t Healthcare Administration Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3227640166/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3227640166/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3227640166/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch