SCATrans: semantic cross-attention transformer for drug–drug interaction predication through multimodal biomedical data

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:BMC Bioinformatics vol. 26 (2025), p. 1-21
المؤلف الرئيسي: Zhang, Shanwen
مؤلفون آخرون: Yu, Changqing, Zhang, Chuanlei
منشور في:
Springer Nature B.V.
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3227640464
003 UK-CbPIL
022 |a 1471-2105 
024 7 |a 10.1186/s12859-025-06165-6  |2 doi 
035 |a 3227640464 
045 2 |b d20250101  |b d20251231 
084 |a 58459  |2 nlm 
100 1 |a Zhang, Shanwen 
245 1 |a SCATrans: semantic cross-attention transformer for drug–drug interaction predication through multimodal biomedical data 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a Predicting potential drug-drug interactions (DDIs) from biomedical data plays a critical role in drug therapy, drug development, drug regulation, and public health. However, it remains challenging due to the large number of possible drug combinations, and multimodal biomedical data, which is disorder, imbalanced, more prone to linguistic errors, and difficult to label. A Semantic Cross-Attention Transformer (SCAT) model is constructed to address the above challenge. In the model, BioBERT, Doc2Vec and graph convolutional network are utilized to embed the multimodal biomedical data into vector representation, BiGRU is adopted to capture contextual dependencies in both forward and backward directions, Cross-Attention is employed to integrate the extracted features and explicitly model dependencies between them, and a feature-joint classifier is adopted to implement DDI predication (DDIP). The experiment results on the DDIExtraction-2013 dataset demonstrate that SCAT outperforms the state-of-the-art DDIP approaches. SCAT expands the application of multimodal deep learning in the field of multimodal DDIP, and can be applied to drug regulation systems to predict novel DDIs and DDI-related events. 
653 |a Drug interaction 
653 |a Semantics 
653 |a Public health 
653 |a Datasets 
653 |a Computer vision 
653 |a Artificial neural networks 
653 |a Graph representations 
653 |a Drugs 
653 |a Product safety 
653 |a Natural language processing 
653 |a Drug therapy 
653 |a Biomedical data 
653 |a Machine learning 
653 |a Drug interactions 
653 |a Drug development 
653 |a Deep learning 
653 |a Pharmacovigilance 
653 |a Social 
700 1 |a Yu, Changqing 
700 1 |a Zhang, Chuanlei 
773 0 |t BMC Bioinformatics  |g vol. 26 (2025), p. 1-21 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3227640464/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3227640464/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3227640464/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch