Effectiveness and safety of AI-driven closed-loop systems in diabetes management: a systematic review and meta-analysis

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:Diabetology & Metabolic Syndrome vol. 17 (2025), p. 1-13
Váldodahkki: Wang, Xiaoya
Eará dahkkit: Si, Jiayuan, Li, Yihao, Tse, Poki, Zhang, Guoyi, Wang, Xiaojie, Ren, Junming, Xu, Jin, Sun, Jiancui, Yao, Xi
Almmustuhtton:
Springer Nature B.V.
Fáttát:
Liŋkkat:Citation/Abstract
Full Text
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 3227650214
003 UK-CbPIL
022 |a 1758-5996 
024 7 |a 10.1186/s13098-025-01819-0  |2 doi 
035 |a 3227650214 
045 2 |b d20250101  |b d20251231 
084 |a 113214  |2 nlm 
100 1 |a Wang, Xiaoya 
245 1 |a Effectiveness and safety of AI-driven closed-loop systems in diabetes management: a systematic review and meta-analysis 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a BackgroundDiabetes is a metabolic disease that can lead to severe cardiovascular diseases and neuropathy. The associated medical costs and complications make timely and effective management particularly important. Traditional diagnostic and management methods, like frequent glucose sampling and insulin injections, impose physical injuries on subjects. The development of artificial intelligence (AI) has opened new opportunities for diabetes management.MethodsWe conducted a meta-analysis integrating existing research, identifying a total of 1156 subjects to assess the effectiveness and safety of AI-based wearable devices, specifically closed-loop insulin delivery systems, in diabetes treatment.ResultsCompared to standard controls, AI-based closed-loop systems can analyze glucose data in real-time and automatically adjust insulin delivery, resulting in reduced time outside target glucose ranges (SMD = 0.90, 95% CI = 0.69 to 1.10, I2 = 58%, P < 0.001).ConclusionAI-based closed-loop systems enhance the precision and convenience of diabetes treatment. This meta-analysis providing essential references for clinical treatment and policymaking in diabetes care. 
610 4 |a Cochrane Library 
653 |a Diabetes 
653 |a Artificial intelligence 
653 |a Trends 
653 |a Hypoglycemia 
653 |a Automation 
653 |a Insulin 
653 |a Performance evaluation 
653 |a Metabolic disorders 
653 |a Clinical outcomes 
653 |a Bias 
653 |a Disease management 
653 |a Machine learning 
653 |a Quality of life 
653 |a Closed loop systems 
653 |a Cardiovascular diseases 
653 |a Diabetic neuropathy 
653 |a Glucose 
653 |a Diabetes mellitus 
653 |a Neuropathy 
653 |a Algorithms 
653 |a Meta-analysis 
700 1 |a Si, Jiayuan 
700 1 |a Li, Yihao 
700 1 |a Tse, Poki 
700 1 |a Zhang, Guoyi 
700 1 |a Wang, Xiaojie 
700 1 |a Ren, Junming 
700 1 |a Xu, Jin 
700 1 |a Sun, Jiancui 
700 1 |a Yao, Xi 
773 0 |t Diabetology & Metabolic Syndrome  |g vol. 17 (2025), p. 1-13 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3227650214/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3227650214/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3227650214/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch