Optimizing deep learning with improved Harris Hawks optimization for Alzheimer’s disease detection

Guardado en:
Detalles Bibliográficos
Publicado en:The Artificial Intelligence Review vol. 58, no. 10 (Oct 2025), p. 301
Autor principal: Zhang, Qian
Otros Autores: Sheng, Jinhua, Zhang, Qiao, Yang, Ze, Xin, Yu, Wang, Binbing, Zhang, Rong
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3227719284
003 UK-CbPIL
022 |a 0269-2821 
022 |a 1573-7462 
024 7 |a 10.1007/s10462-025-11304-9  |2 doi 
035 |a 3227719284 
045 2 |b d20251001  |b d20251031 
084 |a 68693  |2 nlm 
100 1 |a Zhang, Qian  |u Hangzhou Dianzi University, School of Computer Science and Technology, Hangzhou, China (GRID:grid.411963.8) (ISNI:0000 0000 9804 6672); Ministry of Industry and Information Technology of P. R. China, Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Hangzhou, China (GRID:grid.411963.8); Wenzhou University of Technology, School of Data Science and Artificial Intelligence, Wenzhou, China (GRID:grid.411963.8) (ISNI:0000 0005 1164 4044) 
245 1 |a Optimizing deep learning with improved Harris Hawks optimization for Alzheimer’s disease detection 
260 |b Springer Nature B.V.  |c Oct 2025 
513 |a Journal Article 
520 3 |a As the global population ages, Alzheimer’s disease (AD) poses a significant worldwide challenge as a leading cause of dementia, with a slow early progression that eventually leads to nerve cell death and currently lacks effective treatment. However, early diagnosis can slow its progression through pharmaceutical intervention, making accurate early diagnosis using computer-aided diagnosis (CAD) systems crucial. This study aims to enhance the accuracy of early AD diagnosis by developing an improved optimization approach for deep learning-based CAD systems. To achieve this, this paper proposes an improved Harris Hawks optimization algorithm (HHO), named CAHHO, which incorporates crisscross search and adaptive β-Hill climbing mechanisms, thereby enhancing population diversity and search space coverage during the exploration phase, while adaptively adjusting the step size during the exploitation phase to improve local search precision. Comparative experiments with classical algorithms, HHO variants, and advanced optimization methods validate the superiority of the proposed CAHHO. Specifically, this study employs the deep learning model residual network with 18 layers (ResNet18) as the base model for AD diagnosis and uses CAHHO to optimize key hyperparameters, including the number of channels and learning rate. Experiments on the AD neuroimaging initiative dataset demonstrate that the ResNet18-CAHHO model outperforms existing methods in classifying AD, mild cognitive impairment (MCI), and normal control (NC) subjects. Specifically, it achieves accuracies of 0.93077, 0.80102, and 0.80513 in the diagnosis of AD versus NC, MCI versus NC, and AD versus MCI, respectively. Furthermore, Gradient-Weighted Class Activation Mapping (Grad-CAM) visualizations reveal critical brain regions associated with AD, providing valuable diagnostic support for clinicians and holding significant promise for early intervention. 
653 |a Accuracy 
653 |a Machine learning 
653 |a Alzheimer's disease 
653 |a Deep learning 
653 |a Computer vision 
653 |a Brain research 
653 |a Optimization techniques 
653 |a Dementia 
653 |a Magnetic resonance imaging 
653 |a Neural networks 
653 |a Medical imaging 
653 |a Optimization 
653 |a Searching 
653 |a Classification 
653 |a Algorithms 
653 |a Diagnosis 
653 |a Computer aided design--CAD 
653 |a Cell death 
653 |a Optimization algorithms 
653 |a Experiments 
653 |a Exploitation 
653 |a Medical diagnosis 
653 |a Brain 
653 |a Models 
653 |a Necrosis 
653 |a Mapping 
653 |a Cognitive impairment 
653 |a Intervention 
653 |a Neuroimaging 
653 |a Learning 
653 |a Multiculturalism & pluralism 
653 |a Early intervention 
653 |a Variants 
653 |a Disease 
653 |a Climbing 
700 1 |a Sheng, Jinhua  |u Hangzhou Dianzi University, School of Computer Science and Technology, Hangzhou, China (GRID:grid.411963.8) (ISNI:0000 0000 9804 6672); Ministry of Industry and Information Technology of P. R. China, Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Hangzhou, China (GRID:grid.411963.8) 
700 1 |a Zhang, Qiao  |u Beijing Hospital, Beijing, China (GRID:grid.414350.7) (ISNI:0000 0004 0447 1045); National Center of Gerontology, Beijing, China (GRID:grid.414350.7); Chinese Academy of Medical Sciences, Institute of Geriatric Medicine, Beijing, China (GRID:grid.506261.6) (ISNI:0000 0001 0706 7839) 
700 1 |a Yang, Ze  |u Hangzhou Dianzi University, School of Computer Science and Technology, Hangzhou, China (GRID:grid.411963.8) (ISNI:0000 0000 9804 6672); Ministry of Industry and Information Technology of P. R. China, Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Hangzhou, China (GRID:grid.411963.8) 
700 1 |a Xin, Yu  |u Hangzhou Dianzi University, School of Computer Science and Technology, Hangzhou, China (GRID:grid.411963.8) (ISNI:0000 0000 9804 6672); Ministry of Industry and Information Technology of P. R. China, Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Hangzhou, China (GRID:grid.411963.8) 
700 1 |a Wang, Binbing  |u Hangzhou Dianzi University, School of Computer Science and Technology, Hangzhou, China (GRID:grid.411963.8) (ISNI:0000 0000 9804 6672); Ministry of Industry and Information Technology of P. R. China, Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Hangzhou, China (GRID:grid.411963.8) 
700 1 |a Zhang, Rong  |u Hangzhou Dianzi University, School of Computer Science and Technology, Hangzhou, China (GRID:grid.411963.8) (ISNI:0000 0000 9804 6672); Ministry of Industry and Information Technology of P. R. China, Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Hangzhou, China (GRID:grid.411963.8) 
773 0 |t The Artificial Intelligence Review  |g vol. 58, no. 10 (Oct 2025), p. 301 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3227719284/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3227719284/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3227719284/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch