An Experimental Study on Large Action Models in Automated Stock Market Prediction

Guardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2025)
Autor principal: Anderson, Jake
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3227719374
003 UK-CbPIL
020 |a 9798286497720 
035 |a 3227719374 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Anderson, Jake 
245 1 |a An Experimental Study on Large Action Models in Automated Stock Market Prediction 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Stock market prediction remains a complex and dynamic challenge due to its vast dimensionality and intricate nature. This study focuses on the development of a predictive large action model using historical data for stock market analysis. Publicly accessible platforms such as Yahoo Finance were utilized to collect baseline historical data, while the python library, pandas-ta, was leveraged for computation of various technical indicators including variants of momentum oscillators, bollinger bands, and moving averages. The processed data was then used to train and evaluate the proposed model, with the goal of identifying patterns and trends within the stock price movements. Various machine learning techniques were explored to find the optimal solution for the highest predictive accuracy. The results highlight the potential of the model in providing accurate insights of a stock price's future directional movement. This study contributes to the ongoing efforts made towards financial prediction by taking advantage of publicly accessible data and advanced computational methods. 
653 |a Computer science 
653 |a Computer engineering 
653 |a Artificial intelligence 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3227719374/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3227719374/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch