Optimization design of internal space layout of three-bedroom residential apartment based on IGA and DE algorithm

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 7 (Jul 2025), p. e0326153
Autor principal: Zhao, Ling
Otros Autores: Li, Baijun
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3227830832
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0326153  |2 doi 
035 |a 3227830832 
045 2 |b d20250701  |b d20250731 
084 |a 174835  |2 nlm 
100 1 |a Zhao, Ling 
245 1 |a Optimization design of internal space layout of three-bedroom residential apartment based on IGA and DE algorithm 
260 |b Public Library of Science  |c Jul 2025 
513 |a Journal Article 
520 3 |a To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. The model characterizes room functions and spatial locations through binary coding, and uses dynamic fitness function and backtracking strategy to improve space utilization and functional fitness. In the experiments, optimization metrics such as kinematic optimization rate (calculated based on the shortest path and connectivity between functional areas), space utilization rate (calculated by the ratio of room area to total usable space), and functional fitness (based on the weighted sum of users’ subjective evaluations and functional matches) all perform well. Quantitatively, it is found that the model achieves 94.76% in terms of motion optimization rate, the highest space utilization rate is 96.6%, functional fitness is 9.4, and user satisfaction is close to 94.21%. The optimization results show that the proposed method has significant advantages in improving space utilization and meeting personalized design needs. However, despite the good optimization results, the method still faces the problem of improving the optimization ability under high-dimensional space and complex constraints. This study provides an efficient solution for intelligent building layout design and has certain practical value. 
653 |a Behavior 
653 |a Adaptability 
653 |a Algorithms 
653 |a Binary codes 
653 |a Optimization techniques 
653 |a Fitness 
653 |a Kinematics 
653 |a Smart buildings 
653 |a Layouts 
653 |a Architecture 
653 |a Design 
653 |a Evolutionary algorithms 
653 |a Efficiency 
653 |a Optimization models 
653 |a Quality of life 
653 |a User needs 
653 |a Shortest-path problems 
653 |a Genetic algorithms 
653 |a Internal layout 
653 |a User satisfaction 
653 |a Global optimization 
653 |a User feedback 
653 |a Methods 
653 |a Design optimization 
653 |a Utilization 
653 |a Optimization algorithms 
653 |a Building information modeling 
653 |a Architects 
653 |a Cognitive psychology 
653 |a Immunoglobulin A 
653 |a Economic 
700 1 |a Li, Baijun 
773 0 |t PLoS One  |g vol. 20, no. 7 (Jul 2025), p. e0326153 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3227830832/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3227830832/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3227830832/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch