A web-based pneumonia detection system using deep learning on chest X-ray image

Salvato in:
Dettagli Bibliografici
Pubblicato in:IOP Conference Series. Earth and Environmental Science vol. 1510, no. 1 (Jun 2025), p. 012054
Autore principale: Nurdin, Y
Altri autori: Haiqal, M, Azhary, M, Roslidar, R
Pubblicazione:
IOP Publishing
Soggetti:
Accesso online:Citation/Abstract
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3228008937
003 UK-CbPIL
022 |a 1755-1307 
022 |a 1755-1315 
024 7 |a 10.1088/1755-1315/1510/1/012054  |2 doi 
035 |a 3228008937 
045 2 |b d20250601  |b d20250630 
100 1 |a Nurdin, Y  |u Department of Electrical and Computer Engineering, Universitas Syiah Kuala , Banda Aceh 23111, Indonesia 
245 1 |a A web-based pneumonia detection system using deep learning on chest X-ray image 
260 |b IOP Publishing  |c Jun 2025 
513 |a Journal Article 
520 3 |a Pneumonia is a lung infection caused by bacteria, viruses, or fungi that can cause inflammation of the air cavities in one or both lungs. Pneumonia is diagnosed using chest X-rays, but results can take 1 to 3 hours from medical experts, causing delays in treatment for most patients who have pneumonia. Therefore, a web-based artificial intelligence pneumonia detection application was developed in this study. The website development consists of several stages: requirements analysis, system design, model selection and description, application development, and testing. The deep learning model uses a convolutional neural network algorithm with VGG16, which provides effective feature extraction for complex object recognition and has two output classes. The website framework was developed using Flask with MySql for the database. The simulation results show that the classifier model accuracy rate is 98%. The web application can classify chest X-ray images with 100% accuracy on a small test set consisting of five images: two normal and three showing pneumonia. Additionally, the inference model takes only 4.09 seconds to process the classification result. Thus, our proposed e-health web-based system for pneumonia detection is accurate and real-time. 
653 |a Requirements analysis 
653 |a Chest 
653 |a Artificial intelligence 
653 |a Deep learning 
653 |a Applications programs 
653 |a Pattern recognition 
653 |a Pneumonia 
653 |a Artificial neural networks 
653 |a Medical imaging 
653 |a Websites 
653 |a Systems design 
653 |a Machine learning 
653 |a Bronchopulmonary infection 
653 |a Accuracy 
653 |a X-rays 
653 |a Lungs 
653 |a Object recognition 
653 |a Real time 
653 |a Neural networks 
700 1 |a Haiqal, M  |u Department of Electrical and Computer Engineering, Universitas Syiah Kuala , Banda Aceh 23111, Indonesia 
700 1 |a Azhary, M  |u Faculty of Medicine, Universitas Syiah Kuala , Banda Aceh 23111, Indonesia 
700 1 |a Roslidar, R  |u Department of Electrical and Computer Engineering, Universitas Syiah Kuala , Banda Aceh 23111, Indonesia 
773 0 |t IOP Conference Series. Earth and Environmental Science  |g vol. 1510, no. 1 (Jun 2025), p. 012054 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3228008937/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3228008937/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch