Description
Abstract:Tetrandrine (Tet) is a potent inhibitor of Ebola virus replication by blocking NAADP-dependent calcium release through endolysosomal two-pore channels (TPCs) and a moderately potent anti-tumor agent. Using a clickable photoaffinity probe, we identify lysosomal integral membrane protein-2 (LIMP-2) as a direct target of Tet and a key regulator of this calcium signaling. Tet binds LIMP-2’s ectodomain, inhibiting lysosomal cholesterol and sphingosine transport, which alters lipid metabolism. Tet treatment and LIMP-2 depletion inhibit NAADP-dependent calcium release, reversible by removing lysosomal cholesterol and sphingosine. Sphingosine triggers lysosomal calcium release via TPCs and restores this signaling in Tet-treated or LIMP-2-deficient cells, revealing a LIMP-2-regulated, sphingosine-dependent lysosomal calcium pathway. At higher doses, Tet induces apoptosis through unfolded protein response activation independently of LIMP-2. These findings highlight Tet as a LIMP-2 inhibitor, elucidate its role in calcium signaling and cell death, and suggest therapeutic potential for Tet and LIMP-2 inhibitors in antiviral treatments.Tetrandrine is one of the most potent inhibitors of Ebola Virus infection. Here the authors identify LIMP-2 as a direct cellular target of Tetrandrine and establish a functional connection between lysosomal sphingosine homeostasis and calcium regulation.
ISSN:2041-1723
DOI:10.1038/s41467-025-61565-9
Source:Health & Medical Collection