Engineering project management technology based on visual simulation module and particle swarm optimization

Guardado en:
Detalles Bibliográficos
Publicado en:SN Applied Sciences vol. 7, no. 7 (Jul 2025), p. 752
Autor principal: Tian, Hua
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3228195424
003 UK-CbPIL
022 |a 2523-3963 
022 |a 2523-3971 
024 7 |a 10.1007/s42452-025-07375-6  |2 doi 
035 |a 3228195424 
045 2 |b d20250701  |b d20250731 
100 1 |a Tian, Hua  |u Chongqing Metropolitan College of Science and Technology, School of Building Management, Chongqing, China 
245 1 |a Engineering project management technology based on visual simulation module and particle swarm optimization 
260 |b Springer Nature B.V.  |c Jul 2025 
513 |a Journal Article 
520 3 |a In recent years, China’s construction industry has developed rapidly, but it still faces problems such as complex processes, long cycles, and unpredictable environments in engineering projects. To address these issues, a building information modeling development and design based on visual management was proposed to improve the efficiency of collecting and analyzing engineering data and information. At the same time, the particle swarm multi-objective optimization algorithm was adopted to comprehensively analyze the influencing factors during the operation of the module. The results indicated that the response time of the building information model in information processing did not exceed 20% of the total time. By using this method, the project cost prediction error reduced to 30–80 yuan, which demonstrated the accuracy of building information modeling technology. Compared with the efficiency value of the algorithm in the first 10s, the traditional single objective optimization algorithm was 0.28, while the proposed algorithm was 0.40. This significant improvement indicated that the development of building information models could effectively improve the efficiency of information flow. The particle swarm multi-objective optimization algorithm performed well in reducing project cost prediction errors. The results of this study have promoted the information process of the construction industry and provided strong support for achieving efficient and accurate engineering management. 
653 |a Information technology 
653 |a Particle swarm optimization 
653 |a Data processing 
653 |a Trends 
653 |a Algorithms 
653 |a Discriminant analysis 
653 |a Modelling 
653 |a Structural equation modeling 
653 |a Efficiency 
653 |a Modules 
653 |a Multiple objective analysis 
653 |a Budgets 
653 |a Engineering management 
653 |a Construction industry 
653 |a Simulation 
653 |a Information flow 
653 |a Project management 
653 |a Design 
653 |a Information processing 
653 |a Cost control 
653 |a Optimization algorithms 
653 |a Building information modeling 
653 |a Engineering research 
653 |a Economic 
773 0 |t SN Applied Sciences  |g vol. 7, no. 7 (Jul 2025), p. 752 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3228195424/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3228195424/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3228195424/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch