Signal Trend and Loss Forecasting to Support Task-Aware Semantic Offloading Decisions

Պահպանված է:
Մատենագիտական մանրամասներ
Հրատարակված է:ProQuest Dissertations and Theses (2025)
Հիմնական հեղինակ: Lin, Cheng-Sian
Հրապարակվել է:
ProQuest Dissertations & Theses
Խորագրեր:
Առցանց հասանելիություն:Citation/Abstract
Full Text - PDF
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!

MARC

LEADER 00000nab a2200000uu 4500
001 3228587153
003 UK-CbPIL
020 |a 9798288800214 
035 |a 3228587153 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Lin, Cheng-Sian 
245 1 |a Signal Trend and Loss Forecasting to Support Task-Aware Semantic Offloading Decisions 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a The increasing complexity of modern wireless networks demands predictive strategies for proactive adaptation and sustained Quality of Service. This thesis presents a multi-horizon predictive analytics framework that delivers actionable insights for dynamic wireless network management. The framework consists of two complementary components. First, a Random Forest-based signal trend classifier forecasts the directional change of signal strength (up, down, or flat) over the next 1 to 5 seconds, using current signal values, spatial data, and engineered temporal features such as rolling mean and signal variation. Second, a multi-step packet loss classifier predicts cumulative packet loss classes across the same horizons using network features including signal strength, distances, and antenna configuration. To bridge the gap between raw network metrics and application-level outcomes, the framework incorporates a task-aware mapping that links each predicted loss class to performance degradation of downstream applications, such as image classification (e.g., VGG16, ResNet9) and instance segmentation (e.g., YOLOv3, YOLOv8). Decision confidence is also quantified to support risk-aware adaptation. In addition to forecasting, the framework serves as a semantic prediction module for task-aware control systems such as SOAR. By predicting both network degradation and its expected impact on task performance, the system can guide intelligent configuration decisions. These include adjusting MU-MIMO stream count, modifying packet duplication strategies, or scheduling tasks more efficiently. Importantly, when predicted task performance remains within acceptable limits, even under moderate packet loss, the system may choose not to reconfigure. This prevents unnecessary resource consumption and promotes more efficient operation in real-time edge computing environments. Experimental results demonstrate high accuracy across all forecasting horizons, validating the framework’s ability to predict network dynamics. By combining predictive precision, semantic relevance, and interpretability, the proposed framework provides a practical foundation for intelligent and task-sensitive network control in wireless edge environments. 
653 |a Computer science 
653 |a Computer engineering 
653 |a Electrical engineering 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3228587153/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3228587153/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch