A novel fault diagnosis method for gearbox based on RVMD and TELM with composite chaotic grey wolf optimizer

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 24793
Hlavní autor: Huang, Xuebin
Další autoři: Xu, Anfeng, Liu, Hongbing, Ye, Bingcheng
Vydáno:
Nature Publishing Group
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3228610988
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-08318-2  |2 doi 
035 |a 3228610988 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
100 1 |a Huang, Xuebin  |u Hainan College of Foreign Studies, Wenchang, China; Key Laboratory of Island Tourism Resource Data Mining and Monitoring of Ministry of Culture and Tourism, Sanya, China 
245 1 |a A novel fault diagnosis method for gearbox based on RVMD and TELM with composite chaotic grey wolf optimizer 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Fault diagnosis for gearbox by robust variational mode decomposition (RVMD) and twin extreme learning machine (TELM) with composite chaotic grey wolf optimizer (CCGWO) is proposed in this study. Robust variational mode decomposition is an advanced signal processing technique designed to decompose complex signals into intrinsic mode functions (IMFs) while maintaining robustness against noise and outliers,which addresses the limitations of variational mode decomposition (VMD), particularly its sensitivity to noise and its tendency to produce suboptimal results in the presence of outliers. The proposed twin extreme learning machine with composite chaotic grey wolf optimizer (CCGTELM) model can extract higher-level features and has higher classification accuracy than traditional ELM. A novel grey wolf optimization algorithm, named composite chaotic grey wolf optimizer (CCGWO), is used to optimize the kernel parameter of TELM. Thus, TELM with CCGWO (DGTELM) is used to fault diagnosis for gearbox.The experimental results demonstrates that fault diagnosis accuracy of RVMD–CCGTELM is higher than VMD-TELM, VMD–DNN, VMD–CNN, VMD–LSTM, EMD–ELM and WT–ANN, and RVMD–CCGTELM is suitable for fault diagnosis of gearbox. 
653 |a Signal processing 
653 |a Accuracy 
653 |a Embedded systems 
653 |a Wavelet transforms 
653 |a Fourier transforms 
653 |a Fault diagnosis 
653 |a Neural networks 
653 |a Decomposition 
653 |a Biomedical engineering 
653 |a Data analysis 
653 |a Optimization algorithms 
653 |a Vibration 
653 |a Statistical methods 
653 |a Learning algorithms 
653 |a Environmental 
700 1 |a Xu, Anfeng  |u Key Laboratory of Island Tourism Resource Data Mining and Monitoring of Ministry of Culture and Tourism, Sanya, China 
700 1 |a Liu, Hongbing  |u Key Laboratory of Island Tourism Resource Data Mining and Monitoring of Ministry of Culture and Tourism, Sanya, China 
700 1 |a Ye, Bingcheng  |u Key Laboratory of Island Tourism Resource Data Mining and Monitoring of Ministry of Culture and Tourism, Sanya, China 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 24793 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3228610988/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3228610988/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3228610988/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch