Numerical Optimization of a Radial Inflow Turbine Based on a Loss Model of a Cryogenic Turboexpander Using the Slime Mould Algorithm

Guardado en:
Detalles Bibliográficos
Publicado en:Defence Science Journal vol. 75, no. 4 (2025), p. 512-520
Autor principal: Kumar, Anumay
Otros Autores: Singh, Amrik
Publicado:
Defence Scientific Information & Documentation Centre
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3228704843
003 UK-CbPIL
022 |a 0011-748X 
024 7 |a 10.14429/dsj.19832  |2 doi 
035 |a 3228704843 
045 2 |b d20250101  |b d20251231 
084 |a 202629  |2 nlm 
100 1 |a Kumar, Anumay 
245 1 |a Numerical Optimization of a Radial Inflow Turbine Based on a Loss Model of a Cryogenic Turboexpander Using the Slime Mould Algorithm 
260 |b Defence Scientific Information & Documentation Centre  |c 2025 
513 |a Journal Article 
520 3 |a The major component of the cryogenic turboexpander is the radial inflow turbine; thus, improvements in its design and performance are effective for the system. The inspirations of six design parameters, including velocity ratio, inlet and outlet impeller diameters, mass flow rate, and blade height, are examined in the context of the total-to-static efficiency of the RIT turbine cryogenic turboexpander. A 1-D design of the radial-inflow turbine has been implemented through MATLAB 2020. In this paper, A novel artificial intelligence system slime mould algorithm (SMA) was employed for the numerical optimization of RIT through MATLAB 2020. An innovative MATLAB script was created for this optimization. The parameters of mass flow rate, number of blades, and blade angles were varied in a constrained range for optimization. This paper explores five distinct blade scenarios for design and numerical optimization processes through MATLAB 2020. The optimization of radial inflow turbines will require the development of a greater capacity of the cryogenic liquefaction system. The performance measurement of the radial inflow turbine was done based on total-to-static efficiency. In numerical optimization, the selection of blades in the range of 11–15 resulted in an improvement in the total-to-static efficiency by around 1.46 %, specifically for 13 blades. This enhancement represents a significant 5.0 % improvement over the results presented in the ANN model explored in the available literature. The maximum total-to-static efficiency achieved through SMA optimization is 89.94 % for 15 blades. 
653 |a Turbines 
653 |a Performance measurement 
653 |a Inflow 
653 |a Mass flow rate 
653 |a Liquefaction 
653 |a Slime 
653 |a Matlab 
653 |a Optimization 
653 |a Efficiency 
653 |a Blades 
653 |a Algorithms 
653 |a Artificial intelligence 
653 |a Design optimization 
653 |a Design parameters 
653 |a Turboexpanders 
700 1 |a Singh, Amrik 
773 0 |t Defence Science Journal  |g vol. 75, no. 4 (2025), p. 512-520 
786 0 |d ProQuest  |t Military Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3228704843/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3228704843/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch