Hybrid Bit-Parallel and -Serial Processing for Flexible Precision AI Accelerator

Uloženo v:
Podrobná bibliografie
Vydáno v:ProQuest Dissertations and Theses (2025)
Hlavní autor: Huang, Yuhua Benji
Vydáno:
ProQuest Dissertations & Theses
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3228725986
003 UK-CbPIL
020 |a 9798288801303 
035 |a 3228725986 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Huang, Yuhua Benji 
245 1 |a Hybrid Bit-Parallel and -Serial Processing for Flexible Precision AI Accelerator 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Targeting the next generation of AI accelerators, FlexiBit has been proposed as a fully flexible-precision, bit-parallel architecture that efficiently supports both floating-point and integer arithmetic in arbitrary precisions and formats. By enabling true bit-parallel execution for any bitwidth—rather than relying on temporal bit-serial techniques—FlexiBit eliminates compute-unit underutilization and delivers substantial performance-and-area gains. Building on the FlexiBit foundation, this thesis presents a Hybrid Bit-parallel and Bit-serial Processing Architecture that delivers dynamic precision and performance scalability under tight area and energy constraints. This thesis design a dual-mode processing element that can operate in a wide, low-latency parallel mode or a narrow, energy-efficient serial mode, and rapidly switch between them at runtime. Across precisions from 1 to 64 bits, we systematically measure area, latency, and energy to characterize the full design space. Furthermore, we introduce a word-sliced scheme—partitioning an N-bit operand into K slices of P bits—to interpolate between pure parallel and pure serial extremes. Our results demonstrate that hybrid configurations can achieve near-parallel throughput with area and energy costs approaching those of purely serial designs, offering a practical, adaptable accelerator solution for AI workloads with varying accuracy and efficiency requirements. 
653 |a Computer engineering 
653 |a Engineering 
653 |a Electrical engineering 
653 |a Artificial intelligence 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3228725986/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3228725986/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch