How EEG preprocessing shapes decoding performance

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Communications Biology vol. 8, no. 1 (2025), p. 1039
Egile nagusia: Kessler, Roman
Beste egile batzuk: Enge, Alexander, Skeide, Michael A.
Argitaratua:
Nature Publishing Group
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3228992121
003 UK-CbPIL
022 |a 2399-3642 
024 7 |a 10.1038/s42003-025-08464-3  |2 doi 
035 |a 3228992121 
045 2 |b d20250101  |b d20251231 
100 1 |a Kessler, Roman  |u Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (GRID:grid.419524.f) (ISNI:0000 0001 0041 5028) 
245 1 |a How EEG preprocessing shapes decoding performance 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Electroencephalography (EEG) preprocessing varies widely between studies, but its impact on classification performance remains poorly understood. To address this gap, we analyzed seven experiments with 40 participants drawn from the public ERP CORE dataset. We systematically varied key preprocessing steps, such as filtering, referencing, baseline interval, detrending, and multiple artifact correction steps, all of which were implemented in MNE-Python. Then we performed trial-wise binary classification (i.e., decoding) using neural networks (EEGNet), or time-resolved logistic regressions. Our findings demonstrate that preprocessing choices influenced decoding performance considerably. All artifact correction steps reduced decoding performance across experiments and models, while higher high-pass filter cutoffs consistently increased decoding performance. For EEGNet, baseline correction further increased decoding performance, and for time-resolved classifiers, linear detrending, and lower low-pass filter cutoffs increased decoding performance. The influence of other preprocessing choices was specific for each experiment or event-related potential component. The current results underline the importance of carefully selecting preprocessing steps for EEG-based decoding. While uncorrected artifacts may increase decoding performance, this comes at the expense of interpretability and model validity, as the model may exploit structured noise rather than the neural signal.Systematic evaluation of EEG preprocessing reveals how filtering, artifact handling, and other steps influence decoding performance, highlighting trade-offs between classification accuracy and neural interpretability. 
653 |a Accuracy 
653 |a Event-related potentials 
653 |a Design of experiments 
653 |a Regression analysis 
653 |a Electrodes 
653 |a Electroencephalography 
653 |a Time series 
653 |a Teams 
653 |a EEG 
653 |a Classification 
653 |a Neural networks 
700 1 |a Enge, Alexander  |u Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (GRID:grid.419524.f) (ISNI:0000 0001 0041 5028); Humboldt-Universität zu Berlin, Berlin, Germany (GRID:grid.7468.d) (ISNI:0000 0001 2248 7639) 
700 1 |a Skeide, Michael A.  |u Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (GRID:grid.419524.f) (ISNI:0000 0001 0041 5028) 
773 0 |t Communications Biology  |g vol. 8, no. 1 (2025), p. 1039 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3228992121/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3228992121/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3228992121/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch