Understanding the Biases in Daily Extreme Precipitation Climatology in CMIP6 Models

Na minha lista:
Detalhes bibliográficos
Publicado no:Geophysical Research Letters vol. 52, no. 12 (Jun 28, 2025)
Autor principal: Chen, Jiaqi
Outros Autores: Liu, Bo, Martinez‐Villalobos, Cristian, Wang, Bin, Zhang, Zhongshi
Publicado em:
John Wiley & Sons, Inc.
Assuntos:
Acesso em linha:Citation/Abstract
Full Text
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3229016072
003 UK-CbPIL
022 |a 0094-8276 
022 |a 1944-8007 
024 7 |a 10.1029/2024GL114507  |2 doi 
035 |a 3229016072 
045 0 |b d20250628 
084 |a 107510  |2 nlm 
100 1 |a Chen, Jiaqi  |u Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, China 
245 1 |a Understanding the Biases in Daily Extreme Precipitation Climatology in CMIP6 Models 
260 |b John Wiley & Sons, Inc.  |c Jun 28, 2025 
513 |a Journal Article 
520 3 |a Future projections in extreme precipitation depend heavily on climate models. Therefore, assessing their fidelity in reproducing the extreme rainfall characteristics in historical simulation is critical. We evaluated CMIP6 models' performance in reproducing the climatology of daily extremes, focusing on the global land monsoon (GLM) domain that feeds two‐thirds of the world's population. Compared with ERA5, models demonstrate a significant wet bias in GLM domain for the annual maximum daily precipitation (14.14%) and the extreme tail of daily precipitation distributions (32.53%), more than twice the global average. Decomposition of biases reveals that dynamic processes, particularly vertical velocity, primarily drive these biases. Using the quasi‐geostrophic ω $\omega $ equation, we determined that the component associated with large‐scale adiabatic disturbances (ωD ${\omega }_{D}$) mainly drives vertical velocity biases, with diabatic heating term amplifying them. Furthermore, a significant correlation between ωD ${\omega }_{D}$ biases and baroclinicity biases in midlatitude suggests that baroclinicity biases are a key contributor to the vertical velocity biases. 
653 |a Extreme weather 
653 |a Vertical velocities 
653 |a Bias 
653 |a Models 
653 |a Annual precipitation 
653 |a Rainfall 
653 |a Climatology 
653 |a Baroclinic mode 
653 |a Diabatic heating 
653 |a Adiabatic 
653 |a Precipitation 
653 |a Rainfall simulators 
653 |a Velocity 
653 |a Climate models 
653 |a Climate science 
653 |a Baroclinity 
653 |a Daily precipitation 
653 |a Environmental 
700 1 |a Liu, Bo  |u Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, China 
700 1 |a Martinez‐Villalobos, Cristian  |u Faculty of Engineering and Science, Universidad Adolfo Ibáñez, Santiago, Chile 
700 1 |a Wang, Bin  |u Earth System Modeling Center, Nanjing University of Information Science and Technology, Nanjing, China 
700 1 |a Zhang, Zhongshi  |u Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China 
773 0 |t Geophysical Research Letters  |g vol. 52, no. 12 (Jun 28, 2025) 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229016072/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3229016072/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229016072/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch