Multi-Objective Optimal Scheduling of Water Transmission and Distribution Channel Gate Groups Based on Machine Learning

I tiakina i:
Ngā taipitopito rārangi puna kōrero
I whakaputaina i:Agriculture vol. 15, no. 13 (2025), p. 1344-1367
Kaituhi matua: Du Yiying
Ētahi atu kaituhi: Zhang Chaoyue, Wei, Rong, Cao, Li, Zhao, Tiantian, Wang, Wene, Hu Xiaotao
I whakaputaina:
MDPI AG
Ngā marau:
Urunga tuihono:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

MARC

LEADER 00000nab a2200000uu 4500
001 3229135256
003 UK-CbPIL
022 |a 2077-0472 
024 7 |a 10.3390/agriculture15131344  |2 doi 
035 |a 3229135256 
045 2 |b d20250101  |b d20251231 
084 |a 231331  |2 nlm 
100 1 |a Du Yiying 
245 1 |a Multi-Objective Optimal Scheduling of Water Transmission and Distribution Channel Gate Groups Based on Machine Learning 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study develops a synergistic optimization method of multiple gates integrating hydrodynamic simulation and data-driven methods, with the goal of improving the accuracy of water distribution and regulation efficiency. This approach addresses the challenges of large prediction deviation of hydraulic response and unclear synergy mechanisms in the coupled regulation of multiple gates in irrigation areas. The NSGA-II multi-objective optimisation algorithm is used to minimise the water distribution error and the water level deviation before the gate as the objective function in order to achieve global optimisation of the regulation of the complex canal system. A one-dimensional hydrodynamic model based on St. Venant’s system of equations is built to generate the feature dataset, which is then combined with the random forest algorithm to create a nonlinear prediction model. An example analysis demonstrates that the optimal feedforward time of the open channel gate group is negatively connected with the flow condition and that the method can manage the water distribution error within 13.97% and the water level error within 13%. In addition to revealing the matching mechanism between the feedforward time and the flow condition, the study offers a stable and accurate solution for the cooperative regulation of multiple gates in irrigation districts. This effectively supports the need for precise water distribution in small irrigation districts. 
653 |a Water engineering 
653 |a Irrigation 
653 |a Water supply 
653 |a Algorithms 
653 |a Water shortages 
653 |a Optimization 
653 |a Water levels 
653 |a Open channels 
653 |a Multiple objective analysis 
653 |a Irrigation water 
653 |a Machine learning 
653 |a Pareto optimum 
653 |a Gates 
653 |a Energy consumption 
653 |a Prediction models 
653 |a Water distribution 
653 |a Efficiency 
653 |a Scheduling 
653 |a Water conservation 
653 |a Simulation 
653 |a Irrigation districts 
653 |a Artificial intelligence 
653 |a Global optimization 
653 |a Genetic algorithms 
653 |a Decision making 
653 |a Objective function 
653 |a Deviation 
653 |a Errors 
653 |a Hydraulics 
653 |a Operating costs 
653 |a Environmental 
700 1 |a Zhang Chaoyue 
700 1 |a Wei, Rong 
700 1 |a Cao, Li 
700 1 |a Zhao, Tiantian 
700 1 |a Wang, Wene 
700 1 |a Hu Xiaotao 
773 0 |t Agriculture  |g vol. 15, no. 13 (2025), p. 1344-1367 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229135256/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3229135256/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229135256/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch