A Two-Stage Machine Learning Approach for Calving Detection in Rangeland Cattle

Sparad:
Bibliografiska uppgifter
I publikationen:Agriculture vol. 15, no. 13 (2025), p. 1434-1455
Huvudupphov: Wang, Yuxi
Övriga upphov: Perea Andrés, Cao Huiping, Bakir Mehmet, Utsumi Santiago
Utgiven:
MDPI AG
Ämnen:
Länkar:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3229135319
003 UK-CbPIL
022 |a 2077-0472 
024 7 |a 10.3390/agriculture15131434  |2 doi 
035 |a 3229135319 
045 2 |b d20250101  |b d20251231 
084 |a 231331  |2 nlm 
100 1 |a Wang, Yuxi  |u Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA; yuxiwang@nmsu.edu 
245 1 |a A Two-Stage Machine Learning Approach for Calving Detection in Rangeland Cattle 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Monitoring parturient cattle during calving is crucial for reducing cow and calf mortality, enhancing reproductive and production performance, and minimizing labor costs. Traditional monitoring methods include direct animal inspection or the use of specialized sensors. These methods can be effective, but impractical in large-scale ranching operations due to time, cost, and logistical constraints. To address this challenge, a network of low-power and long-range IoT sensors combining the Global Navigation Satellite System (GNSS) and tri-axial accelerometers was deployed to monitor in real-time 15 parturient Brangus cows on a 700-hectare pasture at the Chihuahuan Desert Rangeland Research Center (CDRRC). A two-stage machine learning approach was tested. In the first stage, a fully connected autoencoder with time encoding was used for unsupervised detection of anomalous behavior. In the second stage, a Random Forest classifier was applied to distinguish calving events from other detected anomalies. A 5-fold cross-validation, using 12 cows for training and 3 cows for testing, was applied at each iteration. While 100% of the calving events were successfully detected by the autoencoder, the Random Forest model failed to classify the calving events of two cows and misidentified the onset of calving for a third cow by 46 h. The proposed framework demonstrates the value of combining unsupervised and supervised machine learning techniques for detecting calving events in rangeland cattle under extensive management conditions. The real-time application of the proposed AI-driven monitoring system has the potential to enhance animal welfare and productivity, improve operational efficiency, and reduce labor demands in large-scale ranching. Future advancements in multi-sensor platforms and model refinements could further boost detection accuracy, making this approach increasingly adaptable across diverse management systems, herd structures, and environmental conditions. 
651 4 |a New Mexico 
651 4 |a United States--US 
651 4 |a Chihuahuan Desert 
653 |a Rangelands 
653 |a Beef 
653 |a Research facilities 
653 |a Monitoring methods 
653 |a Livestock 
653 |a Deep learning 
653 |a Cattle 
653 |a Ranching 
653 |a Accelerometers 
653 |a Dairy cattle 
653 |a Sensors 
653 |a Pasture 
653 |a Supervised learning 
653 |a Animal welfare 
653 |a Environmental conditions 
653 |a Monitoring systems 
653 |a Machine learning 
653 |a Systems stability 
653 |a Monitoring 
653 |a Management systems 
653 |a Learning algorithms 
653 |a Deserts 
653 |a Cameras 
653 |a Coordinate transformations 
653 |a Computer vision 
653 |a Navigation behavior 
653 |a Labor 
653 |a Temperature 
653 |a Multisensor applications 
653 |a Real time 
653 |a Data transmission 
653 |a Global navigation satellite system 
653 |a Environmental 
700 1 |a Perea Andrés  |u Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; arperea@nmsu.edu (A.P.); mebakir@nmsu.edu (M.B.); sutsumi@nmsu.edu (S.U.) 
700 1 |a Cao Huiping  |u Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA; yuxiwang@nmsu.edu 
700 1 |a Bakir Mehmet  |u Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; arperea@nmsu.edu (A.P.); mebakir@nmsu.edu (M.B.); sutsumi@nmsu.edu (S.U.) 
700 1 |a Utsumi Santiago  |u Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; arperea@nmsu.edu (A.P.); mebakir@nmsu.edu (M.B.); sutsumi@nmsu.edu (S.U.) 
773 0 |t Agriculture  |g vol. 15, no. 13 (2025), p. 1434-1455 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229135319/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3229135319/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229135319/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch