A Simple and Efficient Local Search Algorithm for the Machine Reassignment Problem

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:Applied Sciences vol. 15, no. 13 (2025), p. 7474-7490
Κύριος συγγραφέας: Canales Darío
Άλλοι συγγραφείς: María-Cristina, Riff, Montero, Elizabeth
Έκδοση:
MDPI AG
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!

MARC

LEADER 00000nab a2200000uu 4500
001 3229140251
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app15137474  |2 doi 
035 |a 3229140251 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Canales Darío 
245 1 |a A Simple and Efficient Local Search Algorithm for the Machine Reassignment Problem 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Considering a computational service as a set of processes, several issues can impact its performance, such as failures and shutdowns. Many strategies can be used to reduce this impact as the assignment of one service in several machines or the distribution of machines in different locations by respecting some constraints such as process dependency and capacity. The Machine Reassignment Problem is a hard problem that consists of a set of machines with associated resources and processes already assigned to these machines. The goal is to obtain a redistribution of the processes according to some optimization criteria, satisfying a set of constraints. In this work, we propose an efficient collaborative local search algorithm to solve the Machine Reassignment Problem. We pay special attention to designing an easily understandable algorithm that requires less computational resources than other more sophisticated well-known approaches in the literature. We show that our approach is effective using the ROADEF competition instances as a benchmark and that can obtain high-quality solutions. 
653 |a Linear programming 
653 |a Packing problem 
653 |a Algorithms 
653 |a Heuristic 
653 |a Assignment problem 
653 |a Optimization 
700 1 |a María-Cristina, Riff 
700 1 |a Montero, Elizabeth 
773 0 |t Applied Sciences  |g vol. 15, no. 13 (2025), p. 7474-7490 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229140251/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3229140251/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229140251/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch