Automatic Classification of BIM Object Based on IFC Data Using the Uniclass Classification Standard

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:Buildings vol. 15, no. 13 (2025), p. 2347-2372
Үндсэн зохиолч: Tang, Shi
Бусад зохиолчид: Bito Takamasa, Shide Kazuya
Хэвлэсэн:
MDPI AG
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3229142215
003 UK-CbPIL
022 |a 2075-5309 
024 7 |a 10.3390/buildings15132347  |2 doi 
035 |a 3229142215 
045 2 |b d20250101  |b d20251231 
084 |a 231437  |2 nlm 
100 1 |a Tang, Shi  |u Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan 
245 1 |a Automatic Classification of BIM Object Based on IFC Data Using the Uniclass Classification Standard 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Classification of BIM objects is critical for enhancing information interoperability and standardization within construction projects; however, research on automated BIM object classification based on standardized classification systems remains limited. Therefore, this study proposes an automated method to classify BIM objects using IFC data under the Uniclass system, aiming to enhance standardization, semantic clarity, and practical applicability. The proposed method first assigns Uniclass codes to 8715 BIM objects, then extracts 13 types of IFC-derived feature variables—including semantic, spatial, and dimensional information, and uses 2 categories of Uniclass coding information (EF and Ss tables) as classification labels, each comprising 11 and 17 classes, respectively. A Random Forest model with 100 decision trees and 10-fold cross-validation is then employed to perform automatic classification. Experimental results demonstrate that the proposed method achieves classification accuracies of 1.00 and 0.99 for BIM objects under the Elements/Functions and Systems classification tasks. This study demonstrates that accurate and fine-grained classification of BIM objects can be achieved using only low-LOD IFC data, thereby contributing to standardized information structuring and facilitating intelligent model management during the early design phase. 
651 4 |a Denmark 
651 4 |a United Kingdom--UK 
651 4 |a Sweden 
651 4 |a United States--US 
651 4 |a Japan 
653 |a Automatic classification 
653 |a Standardization 
653 |a Stand structure 
653 |a Classification systems 
653 |a Interoperability 
653 |a Collaboration 
653 |a Classification 
653 |a Unmanned aerial vehicles 
653 |a Architecture 
653 |a ISO standards 
653 |a Automation 
653 |a Project engineering 
653 |a Decision trees 
653 |a Efficiency 
653 |a Machine learning 
653 |a Construction industry 
653 |a Construction 
653 |a Semantics 
653 |a Artificial intelligence 
653 |a Data collection 
653 |a Methods 
653 |a Building information modeling 
653 |a Information management 
700 1 |a Bito Takamasa  |u STARTS Research Institute, Ltd., Tokyo 103-0027, Japan; takamasa.bito@starts.co.jp 
700 1 |a Shide Kazuya  |u School of Architecture, Shibaura Institute of Technology, Tokyo 135-8548, Japan; shide@shibaura-it.ac.jp 
773 0 |t Buildings  |g vol. 15, no. 13 (2025), p. 2347-2372 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229142215/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3229142215/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229142215/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch