Numerical Study of Surrounding Rock Damage in Deep-Buried Tunnels for Building-Integrated Underground Structures

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:Buildings vol. 15, no. 13 (2025), p. 2168-2194
Үндсэн зохиолч: Zhang, Penglin
Бусад зохиолчид: Zhang, Chong, Chen, Weitao, He Chunhui, Liu, Yang, Chu Zhaofei
Хэвлэсэн:
MDPI AG
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3229142891
003 UK-CbPIL
022 |a 2075-5309 
024 7 |a 10.3390/buildings15132168  |2 doi 
035 |a 3229142891 
045 2 |b d20250701  |b d20250714 
084 |a 231437  |2 nlm 
100 1 |a Zhang, Penglin  |u School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China; zhang_penglin@chidi.com.cn 
245 1 |a Numerical Study of Surrounding Rock Damage in Deep-Buried Tunnels for Building-Integrated Underground Structures 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a When deep-buried tunnels are excavated using the drill-and-blast method, the surrounding rock is subjected to combined cyclic blasting loads and excavation-induced stress unloading. Understanding the distribution characteristics of rock damage zones under these conditions is crucial for the design and safety of building-integrated underground structures. This study investigates the relationship between surrounding rock damage and in situ stress conditions through numerical simulation methods. A constitutive model suitable for simulating rock mass damage was developed and implemented in the LS-DYNA (version R12) code via a user-defined material model, with parameters determined using the Hoek–Brown failure criterion. A finite element model was established to analyze surrounding rock damage under cyclic blasting loads, and the model was validated using field data. Simulations were then carried out to explore the evolution of the damage zone under various stress conditions. The results show that with increasing hydrostatic pressure, the extent of the damage zone first decreases and then increases, with blasting-induced damage dominating under lower pressure and unloading-induced shear failure prevailing at higher pressure. When the hydrostatic pressure is less than 20 MPa, the surrounding rock stabilizes at a distance greater than 12.6 m from the tunnel face, whereas at hydrostatic pressures of 30 MPa and 40 MPa, this distance increases to 29.4 m. When the lateral pressure coefficient is low, tensile failure occurs mainly at the vault and floor, while shear failure dominates at the arch waist. As the lateral pressure coefficient increases, the failure mode at the vault shifts from tensile to shear. Additionally, when the horizontal stress perpendicular to the tunnel axis (σH) is less than the vertical stress (σv), variations in the axial horizontal stress (σh) have a significant effect on shear failure. Conversely, when σH exceeds σv, changes in σh have little impact on the extent of rock damage. 
653 |a Finite element method 
653 |a Rock masses 
653 |a Mathematical analysis 
653 |a Underground structures 
653 |a Tunnels 
653 |a Constitutive models 
653 |a Excavation 
653 |a Safety engineering 
653 |a Rocks 
653 |a Buried structures 
653 |a Damage 
653 |a Hydrostatic pressure 
653 |a Simulation 
653 |a Velocity 
653 |a Disclaimers 
653 |a Blasting 
653 |a Pressure 
653 |a Failure modes 
653 |a Lateral pressure 
653 |a Shear 
653 |a Mathematical models 
653 |a Cyclic loads 
653 |a Unloading 
700 1 |a Zhang, Chong  |u Power China Chengdu Engineering Corporation Limited, Chengdu 610072, China 
700 1 |a Chen, Weitao  |u Power China Chengdu Engineering Corporation Limited, Chengdu 610072, China 
700 1 |a He Chunhui  |u Power China Chengdu Engineering Corporation Limited, Chengdu 610072, China 
700 1 |a Liu, Yang  |u School of Civil Engineering, Wuhan University, Wuhan 430072, China 
700 1 |a Chu Zhaofei  |u School of Civil Engineering, Wuhan University, Wuhan 430072, China 
773 0 |t Buildings  |g vol. 15, no. 13 (2025), p. 2168-2194 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229142891/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3229142891/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229142891/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch