Development of Digital Twin for DC-DC Converters Under Varying Parameter Conditions

Guardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 14, no. 13 (2025), p. 2549-2570
Autor principal: Benjamin, Jessie
Otros Autores: Westergaard Thor, Fahimi Babak, Balsara Poras
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3229143361
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14132549  |2 doi 
035 |a 3229143361 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Benjamin, Jessie 
245 1 |a Development of Digital Twin for DC-DC Converters Under Varying Parameter Conditions 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The constantly changing characteristics of sources, loads, and operating environments in microgrids aboard marine vessels warrant the need for the real-time and accurate transient state estimation of the various converters used for power flow management. This paper presents the digital twin development for a parameter-varying non-isolated DC-DC buck (step down) converter to demonstrate the potential of circuit identification and state estimation within a single digital twin model. The digital twin will utilize individual and parameter-specific NARX-RNNs in a centralized model to identify and adapt system state predictions relative to the most current configuration of the buck converter. Additionally, the model’s ability to maintain state estimation accuracy in the presence of circuit component variation will be demonstrated through simulated deviations from nominal values, and model versatility will be shown through testing a simulation-based model on physical hardware. This modular model, which is demonstrated through simulation and experimentation, can be adapted and scaled for additional circuit configurations. It has the potential to be integrated into real-time system monitoring and fault detection systems within multi-converter microgrid environments. 
653 |a Sea vessels 
653 |a Parameter identification 
653 |a Accuracy 
653 |a Failure 
653 |a Physics 
653 |a Distributed generation 
653 |a Digital twins 
653 |a Voltage converters (DC to DC) 
653 |a Neural networks 
653 |a Power flow 
653 |a Buck converters 
653 |a State estimation 
653 |a Systems stability 
653 |a Real time 
653 |a Fault detection 
653 |a Configurations 
653 |a Parameter estimation 
700 1 |a Westergaard Thor 
700 1 |a Fahimi Babak 
700 1 |a Balsara Poras 
773 0 |t Electronics  |g vol. 14, no. 13 (2025), p. 2549-2570 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229143361/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3229143361/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229143361/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch