An Enhanced Siamese Network-Based Visual Tracking Algorithm with a Dual Attention Mechanism

Guardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 14, no. 13 (2025), p. 2579-2593
Autor principal: Cai Xueying
Otros Autores: Feng, Sheng, Varshosaz, Masood, Senang, Ying, Zhou Binchao, Jia Wentao, Yang, Jianing, Wei Canlin, Feng Yucheng
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3229143373
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14132579  |2 doi 
035 |a 3229143373 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Cai Xueying  |u Institute of Artificial Intelligence, Shaoxing University, Shaoxing 312000, China; cxy1217@usx.edu.cn (X.C.); yingsenang@usx.edu.cn (S.Y.); zhoubinchao@usx.edu.cn (B.Z.); jiawentao1@usx.edu.cn (W.J.); jnyang130@163.com (J.Y.); w18777450024@163.com (C.W.) 
245 1 |a An Enhanced Siamese Network-Based Visual Tracking Algorithm with a Dual Attention Mechanism 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Aiming at the problems of SiamFC, such as shallow network architecture, a fixed template, a lack of semantic understanding, and temporal modeling, this paper proposes a robust target-tracking algorithm that incorporates both channel and spatial attention mechanisms. The backbone network of our algorithm adopts depthwise, separable convolution to improve computational efficiency, adjusts the output stride and convolution kernel size to improve the network feature extraction capability, and optimizes the network structure through neural architecture search, enabling the extraction of deeper, richer features with stronger semantic information. In addition, we add channel attention to the target template branch after feature extraction to make it adaptively adjust the weights of different feature channels. In the search region branch, a sequential combination of channel and spatial attention is introduced to model spatial dependencies among pixels and suppress background and distractor information. Finally, we evaluate the proposed algorithm on the OTB2015, VOT2018, and VOT2016 datasets. The results show that our method achieves a tracking precision of 0.631 and a success rate of 0.468, improving upon the original SiamFC by 3.4% and 1.2%, respectively. The algorithm ensures robust tracking in complex scenarios, maintains real-time performance, and further reduces both parameter counts and overall computational complexity. 
653 |a Feature extraction 
653 |a Optical tracking 
653 |a Accuracy 
653 |a Semantics 
653 |a Artificial neural networks 
653 |a Spatial dependencies 
653 |a Convolution 
653 |a Algorithms 
653 |a Complexity 
653 |a Tracking 
653 |a Localization 
653 |a Real time 
653 |a Robustness 
700 1 |a Feng, Sheng  |u Institute of Artificial Intelligence, Shaoxing University, Shaoxing 312000, China; cxy1217@usx.edu.cn (X.C.); yingsenang@usx.edu.cn (S.Y.); zhoubinchao@usx.edu.cn (B.Z.); jiawentao1@usx.edu.cn (W.J.); jnyang130@163.com (J.Y.); w18777450024@163.com (C.W.) 
700 1 |a Varshosaz, Masood  |u Institute of Artificial Intelligence, Shaoxing University, Shaoxing 312000, China; cxy1217@usx.edu.cn (X.C.); yingsenang@usx.edu.cn (S.Y.); zhoubinchao@usx.edu.cn (B.Z.); jiawentao1@usx.edu.cn (W.J.); jnyang130@163.com (J.Y.); w18777450024@163.com (C.W.) 
700 1 |a Senang, Ying  |u Institute of Artificial Intelligence, Shaoxing University, Shaoxing 312000, China; cxy1217@usx.edu.cn (X.C.); yingsenang@usx.edu.cn (S.Y.); zhoubinchao@usx.edu.cn (B.Z.); jiawentao1@usx.edu.cn (W.J.); jnyang130@163.com (J.Y.); w18777450024@163.com (C.W.) 
700 1 |a Zhou Binchao  |u Institute of Artificial Intelligence, Shaoxing University, Shaoxing 312000, China; cxy1217@usx.edu.cn (X.C.); yingsenang@usx.edu.cn (S.Y.); zhoubinchao@usx.edu.cn (B.Z.); jiawentao1@usx.edu.cn (W.J.); jnyang130@163.com (J.Y.); w18777450024@163.com (C.W.) 
700 1 |a Jia Wentao  |u Institute of Artificial Intelligence, Shaoxing University, Shaoxing 312000, China; cxy1217@usx.edu.cn (X.C.); yingsenang@usx.edu.cn (S.Y.); zhoubinchao@usx.edu.cn (B.Z.); jiawentao1@usx.edu.cn (W.J.); jnyang130@163.com (J.Y.); w18777450024@163.com (C.W.) 
700 1 |a Yang, Jianing  |u Institute of Artificial Intelligence, Shaoxing University, Shaoxing 312000, China; cxy1217@usx.edu.cn (X.C.); yingsenang@usx.edu.cn (S.Y.); zhoubinchao@usx.edu.cn (B.Z.); jiawentao1@usx.edu.cn (W.J.); jnyang130@163.com (J.Y.); w18777450024@163.com (C.W.) 
700 1 |a Wei Canlin  |u Institute of Artificial Intelligence, Shaoxing University, Shaoxing 312000, China; cxy1217@usx.edu.cn (X.C.); yingsenang@usx.edu.cn (S.Y.); zhoubinchao@usx.edu.cn (B.Z.); jiawentao1@usx.edu.cn (W.J.); jnyang130@163.com (J.Y.); w18777450024@163.com (C.W.) 
700 1 |a Feng Yucheng  |u College of Chemical, Dalian University of Technology, Dalian 116024, China 
773 0 |t Electronics  |g vol. 14, no. 13 (2025), p. 2579-2593 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229143373/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3229143373/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229143373/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch