An Efficient Sparse Synthetic Aperture Radar Imaging Method Based on L1-Norm and Total Variation Regularization
Guardado en:
| Publicado en: | Electronics vol. 14, no. 13 (2025), p. 2508-2530 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | The continuous progress of synthetic aperture radar (SAR) imaging has led to a growing emphasis on the challenges involved in data acquisition and processing. And the challenges in data acquisition and processing have become increasingly prominent. However, traditional SAR imaging models are limited by their large demand for data sampling and slow image reconstruction speeds, which is particularly prominent in large-scale scene applications. To overcome these limitations, this study proposes an innovative L1-Total Variation (TV) regularization sparse SAR imaging algorithm. The submitted algorithm constructs an imaging operator and an echo simulation operator to achieve decoupling in the azimuth and range dimensions, respectively, as well as to reduce the requirement for sampling data. In addition, a Newton acceleration iterative method is introduced to the optimization process, aiming to accelerate the speed of image reconstruction. Comparative analysis and experimental validation indicate that the proposed sparse SAR imaging algorithm outperforms conventional methods in resolution, target localization, and clutter suppression. The results suggest strong potential for rapid scene reconstruction and real-time monitoring in complex environments. |
|---|---|
| ISSN: | 2079-9292 |
| DOI: | 10.3390/electronics14132508 |
| Fuente: | Advanced Technologies & Aerospace Database |