Generative Learning from Semantically Confused Label Distribution via Auto-Encoding Variational Bayes

Guardado en:
Bibliografiske detaljer
Udgivet i:Electronics vol. 14, no. 13 (2025), p. 2736-2752
Hovedforfatter: Li, Xinhai
Andre forfattere: Meng Chenxu, Zhou, Heng, Guo, Yi, Bowen, Xue, Yu Tianzuo, Lu Yunan
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3229143783
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14132736  |2 doi 
035 |a 3229143783 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Li, Xinhai  |u Zhongshan Power Supply Bureau, China Southern Power Grid Co., Ltd., Zhongshan 528400, China; zslixinhai@163.com (X.L.); 18923336915@163.com (C.M.); 13226086386@163.com (H.Z.) 
245 1 |a Generative Learning from Semantically Confused Label Distribution via Auto-Encoding Variational Bayes 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Label Distribution Learning (LDL) has emerged as a powerful paradigm for addressing label ambiguity, offering a more nuanced quantification of the instance–label relationship compared to traditional single-label and multi-label learning approaches. This paper focuses on the challenge of noisy label distributions, which is ubiquitous in real-world applications due to the annotator subjectivity, algorithmic biases, and experimental errors. Existing related LDL algorithms often assume a linear combination of true and random label distributions when modeling the noisy label distributions, an oversimplification that fails to capture the practical generation processes of noisy label distributions. Therefore, this paper introduces an assumption that the noise in label distributions primarily arises from the semantic confusion between labels and proposes a novel generative label distribution learning algorithm to model the confusion-based generation process of both the feature data and the noisy label distribution data. The proposed model is inferred using variational methods and its effectiveness is demonstrated through extensive experiments across various real-world datasets, showcasing its superiority in handling noisy label distributions. 
653 |a Design 
653 |a Algorithms 
653 |a Labels 
653 |a Machine learning 
653 |a Entropy 
653 |a Learning 
653 |a Variational methods 
653 |a Semantics 
700 1 |a Meng Chenxu  |u Zhongshan Power Supply Bureau, China Southern Power Grid Co., Ltd., Zhongshan 528400, China; zslixinhai@163.com (X.L.); 18923336915@163.com (C.M.); 13226086386@163.com (H.Z.) 
700 1 |a Zhou, Heng  |u Zhongshan Power Supply Bureau, China Southern Power Grid Co., Ltd., Zhongshan 528400, China; zslixinhai@163.com (X.L.); 18923336915@163.com (C.M.); 13226086386@163.com (H.Z.) 
700 1 |a Guo, Yi  |u Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China; guo.yi@sjtu.edu.cn 
700 1 |a Bowen, Xue  |u Department of Computing, The Hong Kong Polytechnic University, Hong Kong 999077, China; xuebowen801@gmail.com (B.X.); tianzu.yu@polyu.edu.hk (T.Y.) 
700 1 |a Yu Tianzuo  |u Department of Computing, The Hong Kong Polytechnic University, Hong Kong 999077, China; xuebowen801@gmail.com (B.X.); tianzu.yu@polyu.edu.hk (T.Y.) 
700 1 |a Lu Yunan  |u Department of Computing, The Hong Kong Polytechnic University, Hong Kong 999077, China; xuebowen801@gmail.com (B.X.); tianzu.yu@polyu.edu.hk (T.Y.) 
773 0 |t Electronics  |g vol. 14, no. 13 (2025), p. 2736-2752 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229143783/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3229143783/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229143783/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch