Integrated Operational Planning of Battery Storage Systems for Improved Efficiency in Residential Community Energy Management Using Multistage Stochastic Dual Dynamic Programming: A Finnish Case Study

Salvato in:
Dettagli Bibliografici
Pubblicato in:Energies vol. 18, no. 13 (2025), p. 3560-3577
Autore principale: Pattanun, Chanpiwat
Altri autori: Oliveira Fabricio, Gabriel, Steven A
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3229145590
003 UK-CbPIL
022 |a 1996-1073 
024 7 |a 10.3390/en18133560  |2 doi 
035 |a 3229145590 
045 2 |b d20250101  |b d20251231 
084 |a 231459  |2 nlm 
100 1 |a Pattanun, Chanpiwat  |u Department of Graduate Studies, Command and General Staff College, Royal Thai Army, 820/1 Rama V Rd., Nakhon-Chai-Si Road, Dusit, Bangkok 10300, Thailand 
245 1 |a Integrated Operational Planning of Battery Storage Systems for Improved Efficiency in Residential Community Energy Management Using Multistage Stochastic Dual Dynamic Programming: A Finnish Case Study 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study introduces a novel approach for optimizing residential energy systems by combining linear policy graphs with stochastic dual dynamic programming (SDDP) algorithms. Our method optimizes residential solar power generation and battery storage systems, reducing costs through strategic charging and discharging patterns. Using stylized test data, we evaluate battery storage optimization strategies by comparing various SDDP model configurations against a linear programming (LP) benchmark model. The SDDP optimization framework demonstrates robust performance in battery operation management, efficiently handling diverse pricing scenarios while maintaining computational efficiency. Our analysis reveals that the SDDP model achieves positive financial returns with small-scale battery installations, even in scenarios with limited photovoltaic generation capacity. The results confirm both the economic viability and environmental benefits of residential solar–battery systems through two key strategies: aligning battery charging with renewable energy availability and shifting energy consumption away from peak periods. The SDDP framework proves effective in managing battery operations across dynamic pricing scenarios, achieving performance comparable to LP methods while handling uncertainties in PV generation, consumption, and pricing. 
651 4 |a Finland 
653 |a Forecasting techniques 
653 |a Datasets 
653 |a Dynamic programming 
653 |a Random variables 
653 |a Electricity 
653 |a Planning 
653 |a Optimization 
653 |a Energy management 
653 |a Convex analysis 
653 |a Linear programming 
653 |a Stochastic models 
653 |a Algorithms 
653 |a Households 
653 |a Efficiency 
700 1 |a Oliveira Fabricio  |u Department Mathematics and Systems Analysis, School of Science, Aalto University, FI-00076 Espoo, Finland; fabricio.oliveira@aalto.fi (F.O.); sgabriel@umd.edu (S.A.G.) 
700 1 |a Gabriel, Steven A  |u Department Mathematics and Systems Analysis, School of Science, Aalto University, FI-00076 Espoo, Finland; fabricio.oliveira@aalto.fi (F.O.); sgabriel@umd.edu (S.A.G.) 
773 0 |t Energies  |g vol. 18, no. 13 (2025), p. 3560-3577 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229145590/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3229145590/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229145590/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch