Exact Parametric and Semi-Analytical Solutions for the Rucklidge-Type Dynamical System

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 13, no. 13 (2025), p. 2052-2071
Autor principal: Remus-Daniel, Ene
Otros Autores: Pop Nicolina, Badarau Rodica
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3229149272
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13132052  |2 doi 
035 |a 3229149272 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Remus-Daniel, Ene  |u Department of Mathematics, Politehnica University of Timisoara, 300006 Timisoara, Romania 
245 1 |a Exact Parametric and Semi-Analytical Solutions for the Rucklidge-Type Dynamical System 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The behavior of the Rucklidge-type dynamical system was investigated, providing some semi-analytical solutions, in this paper. This system was analytically investigated by means of the Optimal Auxiliary Functions Method (OAFM) for two cases. An exact parametric solution was obtained. The effect of the physical parameters was investigated on the asymptotic behaviors and damped oscillations of the solutions. Damped oscillations are essential for analyzing and designing various mechanical, biological, and electrical systems. Many of the applications involving these systems represent the main reason of this work. A comparison between the obtained results via the OAFM, the analytical solution obtained with the iterative method, and the corresponding numerical solution was performed. The accuracy of the analytical and corresponding numerical results is illustrated by graphical and tabular representations. 
653 |a Behavior 
653 |a Mathematical analysis 
653 |a Iterative methods 
653 |a Equilibrium 
653 |a Variables 
653 |a Exact solutions 
653 |a Approximation 
653 |a Physical properties 
653 |a Methods 
653 |a Gravitational waves 
653 |a Dynamical systems 
653 |a Graphical representations 
653 |a Oscillations 
653 |a Fluid mechanics 
700 1 |a Pop Nicolina  |u Department of Physical Foundations of Engineering, Politehnica University of Timisoara, 300223 Timisoara, Romania; nicolina.pop@upt.ro 
700 1 |a Badarau Rodica  |u Department of Mechanical Machines, Equipment and Transportation, Politehnica University of Timisoara, 300222 Timisoara, Romania; rodica.badarau@upt.ro 
773 0 |t Mathematics  |g vol. 13, no. 13 (2025), p. 2052-2071 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229149272/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3229149272/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229149272/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch