Microstructure and Mechanical Properties of AlCoCrFeNi High-Entropy Alloy-Reinforced Ti-6Al-4V Composites

Guardado en:
Detalles Bibliográficos
Publicado en:Materials vol. 18, no. 13 (2025), p. 3179-3193
Autor principal: Kurdi Abdulaziz
Otros Autores: Basak, Animesh Kumar, Nachimuthu, Radhika, Degnah Ahmed
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3229152575
003 UK-CbPIL
022 |a 1996-1944 
024 7 |a 10.3390/ma18133179  |2 doi 
035 |a 3229152575 
045 2 |b d20250101  |b d20251231 
084 |a 231532  |2 nlm 
100 1 |a Kurdi Abdulaziz  |u Advanced Materials Technology Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia; akurdi@kacst.gov.sa 
245 1 |a Microstructure and Mechanical Properties of AlCoCrFeNi High-Entropy Alloy-Reinforced Ti-6Al-4V Composites 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a High-entropy alloy (HEA) particle-reinforced metal matrix composites (MMCs) are a new generation of MMCs with potential applications as orthopedic material in automotive, aerospace, and biomedical fields. In this study, AlCoCrFeNi HEA-reinforced Ti-6Al-4V metal matrix composites (MMCs) were prepared by microwave sintering. The microstructural aspects of the MMC were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), with an emphasis on the interdiffusion (ID) layer. The mechanical properties of the composites were studied by micro-pillar compression at the micro-length scale. The results show that the ID layer exists between the HEA particles and the matrix, is equiaxed in nature, and leads towards metallurgical bonding within the composite. The strength of this ID layer (1573 MPa of yield strength and 1867 MPa of compressive strength) and its Young’s modulus (570 MPa) were about 1.5 times lower than that of the matrix. The HEA particles exhibit the highest strength (2157 MPa of yield strength and 3356 MPa of compressive strength) and Young’s modulus (643 MPa), whereas the matrix falls in between 2372 MPa of yield strength and 2661 MPa of compressive strength, and a Young’s modulus of 721 MPa. 
651 4 |a United States--US 
653 |a Mechanical properties 
653 |a Plasma sintering 
653 |a Intermetallic compounds 
653 |a Energy consumption 
653 |a Entropy 
653 |a Reinforced metals 
653 |a Titanium base alloys 
653 |a Electron microscopy 
653 |a Oxidation 
653 |a Interdiffusion 
653 |a Temperature 
653 |a High entropy alloys 
653 |a Microscopy 
653 |a Interfacial bonding 
653 |a Ion beams 
653 |a Aluminum composites 
653 |a Metal matrix composites 
653 |a Alloys 
653 |a Microwave sintering 
653 |a Compressive strength 
653 |a Orthopedics 
653 |a Microstructure 
653 |a Interfaces 
653 |a Yield strength 
700 1 |a Basak, Animesh Kumar  |u Adelaide Microscopy, The University of Adelaide, Adelaide, SA 5005, Australia 
700 1 |a Nachimuthu, Radhika  |u Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India; n_radhika1@cb.amrita.edu 
700 1 |a Degnah Ahmed  |u Advanced Materials Technology Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia; akurdi@kacst.gov.sa 
773 0 |t Materials  |g vol. 18, no. 13 (2025), p. 3179-3193 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229152575/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3229152575/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229152575/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch