Effect of Build Orientation on Surface Finish and Hydrodynamic Stability of Inkjet 3D-Printed Microfluidic Channels

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:Polymers vol. 17, no. 13 (2025), p. 1864-1883
Yazar: Cutuli Emanuela
Diğer Yazarlar: Saitta Lorena, Tuccitto Nunzio, Cicala Gianluca, Bucolo Maide
Baskı/Yayın Bilgisi:
MDPI AG
Konular:
Online Erişim:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3229155515
003 UK-CbPIL
022 |a 2073-4360 
024 7 |a 10.3390/polym17131864  |2 doi 
035 |a 3229155515 
045 2 |b d20250101  |b d20251231 
084 |a 231552  |2 nlm 
100 1 |a Cutuli Emanuela  |u Department of Electrical Electronic and Computer Science Engineering, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; maide.bucolo@unict.it 
245 1 |a Effect of Build Orientation on Surface Finish and Hydrodynamic Stability of Inkjet 3D-Printed Microfluidic Channels 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study examined the effect of build orientation on the surface finish of micro-optofludic (MoF) devices fabricated via a polydimethylsiloxane (PDMS)-based 3D-printing primary–secondary fabrication protocol, where an inkjet 3D-printing technique was implemented. The molds (i.e., primaries) for fabricating the MoF devices were 3D-printed in two orientations: along <inline-formula>XY</inline-formula> (Dev-1) and across <inline-formula>YX</inline-formula> (Dev-2) the printhead direction. Next, the surface finish was characterized using a profilometer to acquire the primary profile of the surface along the microchannel’s edge. The results indicated that the build orientation had a strong influence on the latter, since Dev-1 displayed a tall and narrow Gaussian distribution for a channel width of 398.43 ± 0.29 µm; Dev-2 presented a slightly lower value of 393.74 ± 1.67 µm, characterized by a flat and broader distribution, highlighting greater variability due to more disruptive, orthogonally oriented, and striated patterns. These results were also confirmed by hydrodynamically testing the two MoF devices with an air–water slug flow process. A large experimental study was conducted by analyzing the mean period trend in the slug flow with respect to the imposed flow rate and build orientation. Dev-1 showed greater sensitivity to flow rate changes, attributed to its smoother, more consistent microchannel geometry. The slightly narrower average channel width in Dev-2 contributed to increased flow velocity at the expense of having worse discrimination capability at different flow rates. This study is relevant for optimizing 3D-printing strategies for the fabrication of high-performance microfluidic devices, where precise flow control is essential for applications in biomedical engineering, chemical processing, and lab-on-a-chip systems. These findings highlight the effect of microchannel morphology in tuning a system’s sensitivity to flow rate modulation. 
651 4 |a Italy 
651 4 |a United States--US 
653 |a Software 
653 |a Surface finish 
653 |a Accuracy 
653 |a Printers (data processing) 
653 |a Orientation 
653 |a Silicones 
653 |a Sensitivity 
653 |a Normal distribution 
653 |a Biomedical engineering 
653 |a 3-D printers 
653 |a Polydimethylsiloxane 
653 |a Devices 
653 |a Fluids 
653 |a Three dimensional printing 
653 |a Manufacturing 
653 |a Microfluidic devices 
653 |a Slug flow 
653 |a Flow velocity 
653 |a Inkjet printing 
653 |a Microchannels 
653 |a Flow control 
700 1 |a Saitta Lorena  |u Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; gianluca.cicala@unict.it 
700 1 |a Tuccitto Nunzio  |u Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; nunzio.tuccitto@unict.it 
700 1 |a Cicala Gianluca  |u Department of Civil Engineering and Architecture, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; gianluca.cicala@unict.it 
700 1 |a Bucolo Maide  |u Department of Electrical Electronic and Computer Science Engineering, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; maide.bucolo@unict.it 
773 0 |t Polymers  |g vol. 17, no. 13 (2025), p. 1864-1883 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229155515/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3229155515/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229155515/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch