A High-Accuracy Underwater Object Detection Algorithm for Synthetic Aperture Sonar Images

Guardat en:
Dades bibliogràfiques
Publicat a:Remote Sensing vol. 17, no. 13 (2025), p. 2112-2134
Autor principal: Su Jiahui
Altres autors: Xu Deyin, Qiu, Lu, Xu, Zhiping, Lin, Lixiong, Zheng Jiachun
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3229156718
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17132112  |2 doi 
035 |a 3229156718 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Su Jiahui  |u School of Ocean Information Engineering, Jimei University, Xiamen 361021, China 
245 1 |a A High-Accuracy Underwater Object Detection Algorithm for Synthetic Aperture Sonar Images 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Underwater object detection with Synthetic Aperture Sonar (SAS) images faces many problems, including low contrast, blurred edges, high-frequency noise, and missed small objects. To improve these problems, this paper proposes a high-accuracy underwater object detection algorithm for SAS images, named the HAUOD algorithm. First, considering SAS image characteristics, a sonar preprocessing module is designed to enhance the signal-to-noise ratio of object features. This module incorporates three-stage processing for image quality optimization, and the three stages include collaborative adaptive Contrast Limited Adaptive Histogram Equalization (CLAHE) enhancement, non-local mean denoising, and frequency-domain band-pass filtering. Subsequently, a novel C2fD module is introduced to replace the original C2f module to strengthen perception capabilities for low-contrast objects and edge-blurred regions. The proposed C2fD module integrates spatial differential feature extraction, dynamic feature fusion, and Enhanced Efficient Channel Attention (Enhanced ECA). Furthermore, an underwater multi-scale contextual attention mechanism, named UWA, is introduced to enhance the model’s discriminative ability for multi-scale objects and complex backgrounds. The proposed UWA module combines noise suppression, hierarchical dilated convolution groups, and dual-dimensional attention collaboration. Experiments on the Sonar Common object Detection dataset (SCTD) demonstrate that the proposed HAUOD algorithm achieves superior performance in small object detection accuracy and multi-scenario robustness, attaining a detection accuracy of <inline-formula>95.1%</inline-formula>, which is <inline-formula>8.3%</inline-formula> higher than the baseline model (YOLOv8n). Compared with YOLOv8s, the proposed HAUOD algorithm can achieve <inline-formula>6.2%</inline-formula> higher accuracy with only <inline-formula>50.4%</inline-formula> model size, and reduce the computational complexity by half. Moreover, the HAUOD method exhibits significant advantages in balancing computational efficiency and accuracy compared to mainstream detection models. 
653 |a Feature extraction 
653 |a Accuracy 
653 |a Deep learning 
653 |a Algorithms 
653 |a Sound waves 
653 |a Signal processing 
653 |a Sonar 
653 |a Drownings 
653 |a Computer applications 
653 |a Modules 
653 |a Localization 
653 |a Efficiency 
653 |a Noise reduction 
653 |a Design 
653 |a Image quality 
653 |a Complexity 
653 |a Object recognition 
653 |a Acoustics 
653 |a Underwater 
653 |a Bandpass filters 
653 |a Synthetic apertures 
653 |a Signal to noise ratio 
700 1 |a Xu Deyin  |u School of Ocean Information Engineering, Jimei University, Xiamen 361021, China 
700 1 |a Qiu, Lu  |u School of Ocean Information Engineering, Jimei University, Xiamen 361021, China 
700 1 |a Xu, Zhiping  |u School of Ocean Information Engineering, Jimei University, Xiamen 361021, China 
700 1 |a Lin, Lixiong  |u School of Ocean Information Engineering, Jimei University, Xiamen 361021, China 
700 1 |a Zheng Jiachun  |u School of Ocean Information Engineering, Jimei University, Xiamen 361021, China 
773 0 |t Remote Sensing  |g vol. 17, no. 13 (2025), p. 2112-2134 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229156718/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3229156718/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229156718/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch